数学 大学生・専門学校生・社会人 5日前 (2)はbn+1−bn=dで解けるのでしょうか? 解き方教えていただければ助かります🙏 10 等差数列 -5, -3, -1, 1, 3, ······ を {an} とする。 数列 {an} の項を, 初項 から2つおきにとってできる数列 α1, A4, A7, ...... を {6} とする。 (イ) 数列{bm} の一般項を求めよ。 (2) 数列{6} はどのような数列か。 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 7日前 至急教えて欲しいです🙏 1. 次の [1] の方法で表示された集合を [2] の方法で表せ. (1) A={0,4,8, 12, 16, 20} (2) B={1,3,5, 9, 15, 45} 2.全体集合をU= { 1, 2, 3, 4, 5, 6,7,8,9}とし,A={3,4,5,7,8}, B ={1, 2, 5, 6, 9} とする.このとき, 次の集合を求めよ. (1) A∩B (2)Ā (3) B (4) AUB 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 大門2の簡約化解いて欲しいです。 最初、簡約化した時は、7とか9とか値がでかいから小さくしてから簡約化を始めようとか考えていたのですが、なんぼしてもダメだったので、次にゴリ押しで計算していくような方法でしました。でも、結果は2枚目の通り分母分子がすっごいでかい値になってし... 続きを読む 数学 初歩からジョルダ 3x-6y+5z+W=-7 7x+27+5w = =-9 -2x+10g+5z+14w=6 4x+y+27+2w=3 5+2g-Z+w=0 E = ) [レ 5 14 6 3-6 37 2 4 54 5 0 10 5 2 1 2 で 2 E→ Ex(t) E21(-7) E31(2) E41 (-4) E51(-5) 2 P より、 3-65 7245 2 S 10 1 2 SN'T NA 2 2 -9 630 となるので、 をおいて、拡大存的別を問約化する。 → 1 59-179 。 E34 0 125/18 5/18 自分 。 E23( 00 262/9 - 380 32/9 0 E2(6) b 102/6 - 16% 62/6 14 Esa (-14) 0 0 0 -2 - 7/3 140/22/3 。 6 0 0 5/1/3 4/3 9-1/3 2/3 3/3 122/322/325/3 - 4/17 25/234327/468 12/13 -4089 9/26 2539 ( E12(2) E42(-9) ₤32(-12) 0 0 0 0 0 0 →>>>> ¥35 F3 (56) 長は小麦) E231-1/2) ₤43(-) Ess(-) 0 - 0 0 78 0710035 156 1673 117 09 0 00 176362 13 0 0 0 L 0 0 0 00 0 O D 2539 1 8178 b -00 0 20/18328/9 2/9 2619-3893819 103/31 -26-38-9 - 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 最後できたと思ったのですが、 M=1の時の値が問題文のBと等しくなかったことにきずいて、よく考えたら二項定理が間違っていると思いました。 そして二項定理を解こうとしたのですが、どうすれば良いのか分からなかったので教えて欲しいです。 (2)方針としては(1)を使って規則性... 続きを読む [1] (1) m 010 A O = J D D O 0 O 1 9 0 m=292 A 00 m=32. A³ =AA= 8 001 010 0.0 DO = ( 0 0 0 ° P 00 0 010 000 9 11 800 10 D D O 0 060 000 m239 z Am = (2)A+4E= D 060 AE = EA +2. Bm = (A+4E)" m T 0 0 C A = A + 4m AE + 4 Em = = m 4 Am f +4₤m ex AmA +4E 04mo + 0 04h 0 0 0 40 = 4 0 4 0 0 = I (A+46) B AM + ml 4EAM- である。 mCAA mm Cm 4m 4E m = 1 B 962 m=2982 0 0 0 a B² 00 1 1=39785 006 000 0 00 f P D P O 0 4 + D 8. 0 + 00 8 0 004 + 40 040 4 。 = とかるので 45 0 D 45 6 0 4 0 D O 4 = 0 4 48 0 0 48 0 4 B³ = 000 f 120 。 + 4 D D = 4120 O O 12 D 4 9 D 4 12 0 O P 9 0 G 123962 [44m °) 0 0 44m 004 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 教えて欲しいです A2. 以下の領域に対して, 単調増大列を一つ作れ. 1.D=R2. 2.E={(x,y) ∈R2 | x>0,y > 0}. 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約1ヶ月前 手描き図形汚くてすみません。 角Bは直角である 点MはBCの中点 この直角三角形が一回転する時の軌跡を描いて欲しいです。 A B M C 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 約2ヶ月前 (1)から分かりません。なぜこのようなグラフになるんでしょうか? 123 3章 8 関数とグラフ つけ。 かけ。 重要 例題 立つ。これを場合分けに利用 幅1の範囲で区切り ≦2x<2,2x=2で場合分け、 1≦x<2, x=2で場合分け、 =-2 -2-101 きy=-2 (2) y=-1 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラフをかけ。 (1) y=f(x) 指針 (2)y=f(f(x)) 2x (0≦x<2) f(x)= 8-2x (2≤x≤4) 定義域によって式が変わる関数では, 変わる 境目のxyの値に着目。 (2)f(f(x)) f(x)のxにf(x)を代入した式で、 f(x) <2のとき2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,0≦f(x) <2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 (2f(x) (0≦f(x)<2) (2) f(f(x))= 18-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 2≦x≦3のとき f(f(x))=2f(x)=2.2x=4x f(f(x))=8-2f(x)=8-2.2x =8-4x f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) 変域ごとにグラフをかく。 < (1) のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は y=0 1≦x<2なら =16-4x f(x)=2x y=1 よって, グラフは図(2) のようになる。 y=2 (1) (2) y ya =x+1 -1 2 A M O 1 2 3 4 x 0 1 2 3 4 x 2≦x≦3なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 -2=0 an x= ntpと表されるとき、 とき, 01より xの整数部分を表す記号であ 参考 (2) のグラフは,式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線・細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 とする。 8から2倍を 引く 4 2 0 4 x 2倍する 練習 関数f(x) (0≦x<1) を右のように定義するとき, ◎ 71 次の関数のグラフをかけ。 2x (0 ≤ x < 1/1) f(x)= (1) y=f(x) 2x-1 (2) y=f(x)) 11/1/1≦x<1) 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 2ヶ月前 これが意味もわからないくらいわからないです…。 細かいところまで教えていただけると嬉しいです。 2/3 10 球面上の2点を結ぶ最短路は, 2点と球面の中心を通る平面による切り口の円 (大円)の弧で与えられ, この円弧の長さを2点間の距離と定める.具体的な計算では,(スマートフォンの) 関数電卓を用いよ. (1) スマートフォンのコンパス (方位磁針) アプリを用いた地球の半径を見積もる方法を論じ、 実際に 見積もってみよ. (2) 図のように, 半径 R の球面上に3点 A, B, C を定める. この とき, COS ∠AOB = sina.sin β.cosy+cosa.cos β Z B B y であることを示せ . x (3) 京都 (北緯35° 東経 135°) とニューメキシコ州アルバカーキ (北緯35° 西経 106°) はほぼ同じ 緯度にある (2) の図を C を北極とした地球に見立て、関係式 (★)を用いて, 京都とアルバカーキの距 離を求めよ. また, 比較のため, 緯度が 35°の緯線に沿った2地点の距離を求めよ. (4)(2) における角度 α, B, y はそれぞれに対応する円弧と R の比で表すことができる.このとき, 関 係式 (★) は,R→∞の極限で, 平面上の △ABC の余弦定理となることを示せ. 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 2ヶ月前 こちらの問題を教えていただきたいです。 よろしくお願いします。 9 中学校の理科で習ったように,地震は2種類の波, P波 (縦波), S波 (横波) から構成されていることが知られている. P 波, S波は, それぞれ, 秒速 8 [km], 秒速4 [km] で震源から球面波として伝わるとする.P 波が観測され てからS波が観測されるまでの時間を初期微動継続時間とし、この時間を 測ることにより震源までの距離を見積もることができる. 先般の地震で, 図 の地点 0, A, B で, それぞれ 10.75 秒 11.25 秒 21.3125 秒の初期微動継 続時間が観測された. ここで, A, B は, それぞれ 0 から東に 44 [km], 北 へ253.5 [km] の位置にあるという. (1) 0, A, B から震源までの距離をそれぞれ求めよ. (2) 震源の位置と震源の深さを求めよ. y B → 回答募集中 回答数: 0
数学 大学生・専門学校生・社会人 2ヶ月前 こちらの問題を教えていただきたいです。 特に(3)がわからないです。 7 なるキーが付いている平方根が計算できる電卓を用意する. ある数a>0 を適当に設定し, a x3 = × 3 = 1セット 1セット とくりかえす. 次の問いに答えよ. 3 (1)(★)により表示される数はどのような数に収束するか論ぜよ. のところを (2)(★)において, はどのような数に収束するか論ぜよ. (3)2の値を得る方法を論ぜよ. no 1セット とする.このとき表示される数 回答募集中 回答数: 0