学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)の考え方を教えていただきたいです。 内積0を使うのかな?という検討はつきましたが、条件で与えられているベクトルをどのように扱えばいいか分からなくなってしまいました。

第1問 R3を3次元実列ベクトル全体の集合, I 3×3 を3×3 の実行列全体の集合とする. 1, 12, 73 ∈ R3は一次独立な単位長ベクトル, 4∈R3は n1, 2, ng と平行でない単位長ベクトルとす る.また,正方行列 A, B を 4 A= - 2 B = Σnin T \\n-n i=1 とする.ここで, XT, æT はそれぞれ行列 Xの転置行列とベクトルæの転置ベクトルを表 す。 以下の問いに答えよ。 (1)Aの階数が3となるような 4 に関する条件を求めよ. (2) 3次元ユークリッド空間において以下の3つの条件を満たす4つの平面 II = {æ ∈ R3 | new - d = 0} (d は実数, i = 1, 2, 3, 4) を考える (i) A の階数は3であ る, (ii) Ω = {æ ∈R3 | new-d≥0, i = 1, 2, 3, 4} が空集合ではない, (iii) II (i = 1, 2, 3, 4)に接する球C (⊂ Ω) が存在する. このときCの中心の位置ベクト ルをベクトルuER を用いて A-1u の形で表す. d (i = 1, 2, 3, 4)を用いてuを 表せ. (3) B が正定値対称行列であることを示せ. (4)4つの平面 {æ∈R3|nex-d=0} (dは実数, i = 1, 2, 3, 4) への距離の2乗和が 最小となる点P を考える. Pの位置ベクトルをベクトルver を用いて B-1 の形 で表す. ni, di (i = 1, 2, 3, 4) を用いて”を表せ. (5)13において点 Qi (位置ベクトルをER3とする)を通りに平行な直線をんとす る(i = 1, 2, 3). 任意の点R (位置ベクトルをy∈ とする) をんに直交射影した 点を R; とする.R の位置ベクトルを行列 Wi∈ R 3×3 を用いて y - Wi(y-æž) と表 す. I∈IR 3×3 を単位行列とする. (a) と I を用いて W を表せ. (b) WWWż を示せ. = (c)平面Σ = {ER3 | afx = b} を考える (a∈3は非零ベクトル, b は実数). 点SE∑はL, Iz, 13 への距離の2乗和を最小にする点である.n1, n2, n3 が互 いに直交するとき,Sの位置ベクトルをベクトルw∈3 を用いて aa ab I - w+ T ara の形で表す.ただし, は a,bには依存しないものとする. w を Wi, πi (i = 1, 2, 3) を用いて表せ. p. 1

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の知識ある方、以下にある式の導出方法分かりやすく教えていただきたいです。 分かるところだけでも教えてくれると嬉しいです😭 ちなみにこのサイトは、 統計学入門 http://www.snap-tck.com/room04/c01/stat/stat0001.html こ... 続きを読む

19:56 1 allệ (注3) 相関分析と同様に回帰分析の場合も信頼区間を求めることができま す。まずyの推測値の信頼区間は次のようになります。 この信頼区間は母集 団のy推測値の100(1-α) % が含まれる範囲を表し、信頼限界と呼ぶことが多 いようです。 y=a+b=(my-bmx)+bx = my+b(z-mz)→(j-my)=b(x-mz) VR VR V(j-my) = V(j)+V(my)-2C(j,my) = V(g) + -2 = V(y) - VR =V n n n =V(b(z-mx))=(x-m²) 2V(b)=(x-m²) 2VR S エエ (x - ₂)² 2V (6) - Vx{1+ (².²} =VR n S x=X0の時のy推測値の100(1-α)% 信頼限界: U Dol=a+bro ±t(n-2,a) VR -2,0)√| V₁ { 1/2 + ( 2 = m₂) ² } n S エ mx:xの標本平均 Sxx:xの平方和 VR : 残差分散 VR C(jj,my) = y推定値とmyの共分散 t(n-2, α): 自由度(n-2)のt n 分布における100α%点 この100(1-α)% 信頼限界において、x=mxの時の値を計算すると次のように なります。 VR ŷOL =a+bm±t(n-2,0) VR・ -2,0) √/ VR { 1 1 1 + (m₂ - m₂)² S エエ 2²}. =my±t(n-2,a)V n n これは値と残差分散が少し異なるだけで、 平均値の信頼限界(信頼区間) とほ ぼ同じ式であることがわかると思います。 つまり回帰直線は平均値を2次元 に拡張したものに相当し、 y推測値の信頼限界は平均値の信頼限界を2次元に 拡張したものに相当することになります。 次にyの信頼限界を求めてみましょう。 もしaとbに誤差がない、つまりy推 測値に誤差がないとすると次のようになります。 これが許容限界になりま す。 V(g) = V(g+c)=V(e) =VR x=x0の時のyの100(1-α) % 許容限界: gol =a+bro ±t(n-2,a)VVR you x=mxの時: gol = my±t(n-2,a) VVR しかし実際にはaとbには誤差があるので次のようになります。 これが棄却 限界です。 回帰分析の場合は棄却限界のことを予測限界 (prediction limit)と 呼びます。 (x-²)) S エ n n SII V(g+c)=V(g)+V(c) +2C(j,c)=VR /R { 1 + (*² =− m ₂) ² } + V₁ + 0 = VR { 1 + 1 2 + ( x − m ₂ )² ]} x=X0の時のyの100(1-α) % 予測限界: 1 (x-m₂)² yoz=a+bro ±t(n-2.0)/VR =t(n-2,α) √ -2,0) √/V₁ { 1 + 1 + n S エ U x=mxの時: yol = my ±t(n-2,a) 2, a) √/ VR (1+1) VR (1+ 安全ではありません - snap-tck.com

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学の「微分積分」で出題された周波数の課題です。 (1)だけでもいいのでわかる方いらっしゃったら教えてください。

2 以下の説明を読み、 設問 (1) (6) 答えよ. 授業中に周波数を少しずらした二つの音を発生させて、唸りが聞こえるこ とを実演した.この現象を数学的に記述してみよう。 音とは、空気の振動が空気中を伝播して耳に届くことで認識される自然現 象である. tを時刻 (単位:秒) として、振動がy=sin (ct) (cは定数) の 形で表される波を正弦波と呼ぶ。 正弦波の周波数 (単位:Hz=1/秒) とは 「波が1秒間に何回振動する か」 を表す量である. 例えば sin (2t) は 「周波数1の正弦波」 であるが、 この音波は人間の耳には聞こえない。 人間の可聴域はだいたいf=20Hz 15,000Hz であると言われている。 (1) 周波数 f(Hz) の正弦波を時刻t (秒) の関数で表せ。 (ヒント: f は正の整数であると考え、 t=1のときに sin の中身が 「f回回転 「した角度」を表すように定数を定めれば良い) さて, 音波は重ね合わせの原理が成り立つ。 つまり、二つの地点から発せ られる音波がある地点Pでそれぞれ a(t), b(t) で表されるとき, それら を同時に発生させると P では a(t)+b(t) という音波となる. いま周波数 f=400Hzを中心として、そこから前後に1Hz ずらした二つ の周波数 f=399 Hz, fz = 401Hz を考えよう。 (2) 周波数ffzの正弦波を同時に発生させたときに観測される音波 a(t) を二つの三角関数の和の形で表せ。 (式になったの値は代入 しなくて良い。) (3) h = f1 = f +1 であることと、 三角関数の加法定理を用 いて、上の式を二つの三角関数の積(の定数倍) の形で表せ。 (4) この積に現れる二つの三角関数のグラフの概形をt=-1からt= 1までの範囲でそれぞれ描け. (一方は正確に描くのは人間には 不可能なので雰囲気で良い。 もう一方は正確に描くこと.) (5) (4) を用いて音波 α(t) の概形を描け. (6) この唸りの周期は何秒か? 以上.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問題2.28の解き方が分かりません。元 はどうやって求めるのですか。

0 (2) (1) ¹ sgn(o) sgn(¹) = sgn(e) : よって sgn (7) = ±1 のとき sgn (™)=±1 (複号同順). 例 2.20. 置換o= 1 2 3 4 5 67 8 9 を互換の積に分解し, 偶置換か奇置換かを判定せよ。 7 6 8 21 4 93 5 (解答例). まず巡回置換の積に分解する。 1→7→9→5→1,26→4 → 2,3→8→3なので、 a = (38) (264) (1795) さらに互換に分解し, =(38) (24) (26) (15) (19) (17) よって sgn (r)=(-1)=1.つまり偶置換. 問題 2.27. 次の置換を互換の積に分解せよ。 また各々の置換の符号を求めよ。 (1) (1364) 1 2 3 4 5 6 7 (2) (1 2 5 3 4) (3) (2 4 6) (4) (5) 2 3 4 5 6 7 8 9 3 4 3 7 412 5 1 986572) n 文字の置換全体 (の集合) を Sm とかく. n 文字の置換 = (k 0= 1 2 www n k₁ k₂ は k1,..., km を決めれ ば一意的に定まるので, S, の元の個数はn個の順列の個数に等しく, n! である. 例えば3の場合, S3 = {e, (12), (13), (23) (123), (132) } の6(=3!) 個ある。 問題 2.28. ら の元をすべて求め, 偶置換と奇置換に分けよ.. 2.7 行列式 (テキスト 814) n個の置換を考える。 n次正方行列 A = (at) に対し、 第1行, 第2行,・・・ 第n 行の成分をそれぞれ異 なる列から1つずつとり、それらの積 41個(1) 2個 (2) ・One(n) をつくる、これに置換の符号sgn (o) をかけて和 But al 14 dot & toxx tt

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問題2.28の解き方が分かりません。解く手順を教えて頂きたいです。

0 (2) (1) ¹ sgn(o) sgn(¹) = sgn(e) : よって sgn (7) = ±1 のとき sgn (™)=±1 (複号同順). 例 2.20. 置換o= 1 2 3 4 5 67 8 9 を互換の積に分解し, 偶置換か奇置換かを判定せよ。 7 6 8 21 4 93 5 (解答例). まず巡回置換の積に分解する。 1→7→9→5→1,26→4 → 2,3→8→3なので、 a = (38) (264) (1795) さらに互換に分解し, =(38) (24) (26) (15) (19) (17) よって sgn (r)=(-1)=1.つまり偶置換. 問題 2.27. 次の置換を互換の積に分解せよ。 また各々の置換の符号を求めよ。 (1) (1364) 1 2 3 4 5 6 7 (2) (1 2 5 3 4) (3) (2 4 6) (4) (5) 2 3 4 5 6 7 8 9 3 4 3 7 412 5 1 986572) n 文字の置換全体 (の集合) を Sm とかく. n 文字の置換 = (k 0= 1 2 www n k₁ k₂ は k1,..., km を決めれ ば一意的に定まるので, S, の元の個数はn個の順列の個数に等しく, n! である. 例えば3の場合, S3 = {e, (12), (13), (23) (123), (132) } の6(=3!) 個ある。 問題 2.28. ら の元をすべて求め, 偶置換と奇置換に分けよ.. 2.7 行列式 (テキスト 814) n個の置換を考える。 n次正方行列 A = (at) に対し、 第1行, 第2行,・・・ 第n 行の成分をそれぞれ異 なる列から1つずつとり、それらの積 41個(1) 2個 (2) ・One(n) をつくる、これに置換の符号sgn (o) をかけて和 But al 14 dot & toxx tt

回答募集中 回答数: 0
1/3