学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)どう計算してるんですか? 書いて欲しいです、、

次の等式を示せ。 (1) 1-tanh2x=- 1 cosh2x (2) sinh(x+y)=sinhx cosh y±coshx sinhy- 当 (3) cosh(x±y)=coshx coshy±sinhxsinhy 指針 双曲線関数の定義式 sinhx=- e-e-* 2 cosh.x=_extex tanhx=- e*-e-* (1) 関数 また、 Blim xa 2 e*+e** と、等式 coshx-sinhx=1 を利用して式変形を行う。 等式 A=B の証明の方法は,次のいずれかによる。 (2) x- これ [1] AかBの一方を変形して,他方を導く (複雑な方の式を変形)。 [2] A, B をそれぞれ変形して,同じ式を導く。 [A=C, B=C⇒A=B] [3] A-B=0 であることを示す。 [A=B⇔A-B=0] ここでは, [1] の方法で証明する。 (3) 任 あ とな x= り立 ex-e-x 解答 (1) tanhx= であるから extex 1-tanhx=1-(ex-e_x)= (e2x+e-2x+2)-(e2x+e-x-2) daia そこ ま (exte-x)2 dale deob ad (ex + e¯x)² = (ex + ex )² 2 cosh2x 2 ex-e-x (2) sinhx= coshx= 2 exte-x 2 ey-e-y ete- がはこ sinhy=- 2 coshy=2 であるから sinhx coshy ±coshx sinhy= ex-exte-y exte e-e -y ・土・ (4) ネ 2 2 4 lexty_ -e-(x±y) 2 ex-ex (3) sinhx=- (ex+x+ex-x-e-x+y—e¯¯³) ± (ex+y—ex−y + e −x+y-e¯x-y) sin(x±y) (複号同順) 2, coshx= t=e exte-x 2, sinhy= であるから cosh x coshy±sinhx sinh y=- exte¯* e³te¯ e-ex e-e- 2 2 ・土・ (ex+x+ex-y+e¯x+y+e¯*¯³) ± (e*+y—ex-y-e-x+x+e-x-3) 4 2 exty te - (x+y) 2,coshy= 2 ま (6)x で COS 更 ま sete

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解答の 増加するから、以降の解説が全く分かりません。 どなたか解説お願いします。

2 (an) in 211/2/11 基本 例題 029 関数の極限 -δ論法の基本 (am) = f(s) th ★★ The を払えよ! 関数f(x) =x2+1は, x→1で2に収束する。 E0.05 0.005 のとき |x-1|<8 ならf(x)-2|<g を満たすような正の実数の値をそれぞれ1つ定め よ。また、一般ののときはどうすればよいか。 指針 e-δ論法(基本例題 030 の指針参照) の言葉で ya x→1のときf(x) 2になる事実 . 6 2<y<2+s をとっても、それに対応してx=1を中心とす る範囲 0<x-1|<8 を十分小さくとれば、この範囲のすべて のxに対して y=f(x) の値が2-s<y<2+e の範囲に含まれ る」 ということである。 を説明すると 「y=2 を中心とするどんなに小さい範囲(1+8) S 2+cl 2 f(1-0) 2- 1 この収束を示すには、y軸の区間 2-e<y <2+e が任意に与 えられたとき, x軸の区間 0<|x-1| <δをみつけることにな る。 01 - 8 11+8 f(1+δ)-2>2-f(1-δ) であるから,まずはs=0.05,0.005 の場合に具体的に計算をしてか ら 「f(1+8) <2+s ならばf (18) >2-c となること」 を示す。 これにより,f(1+8)=2+s という式から上限となるδを決定できる。 または「任意の正の数」であるから,<e の場合だけでなく, >1の場合も別に考える。 E-δ論法の詳しい説明は本書の53ページまたは「数研講座シリーズ 大学教養 微分積分 の61,62ページを参照。 解答 f(x) は x>0 の範囲で単調に増加するから、ff(1-6)>2-6 かつ f(1+δ) <2+ となる正の数δを1つ定めれば, 1-8 <x<1+8となるすべてのxに対して2-s<f(x) <2+s が成り立つ。 [1]=0.05 のとき (0.95)=1.95, (105) 2.05 であるから, 1-δ<x<1+δとなるすべてのxに対して 2<f(x) <2+が成り立つための条件は 180.95 かつ 1+1.05 である。 例えば,8=0.01 とすると (18)=0.992=0.9801 0.95 より (1+δ)²=1.012=1.02011.05 より 1-8≥√0.95 1+8√1.05 E-δ論法の基本 を満たしている。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

青チャート数学1aの例題46についてです。[2]のAかつBを求めるときに2つのサイコロを区別して考えるとどちらも6が出る事象は1通りではなく2通りでカウントするべきだと思います。ですが、答えは1通りでカウントしています。なぜですか?

た。 重要 例題 46 2つのさいころを同時に投げる試行を考える。 Aは少なくとも1つの目が出る らは出た目の和が偶数となる事象とする。 おそれの事象が起こる。 (1) る確率を求めよ。 [2] ANB [3] AUB [4] ANB [2] A,Bのどちらか一方だけが起こる確率を求めよ。 全事象Uは,右図のように, 互いに排反な4つの事象 ANB, A∩B, A∩B, ANB に分けられる (p.304 参照)。 (1) [3] P(AUB)=P(A)+P(B)-P(A∩B) [4] P(A∩B)=P(A)-P(A∩B) [5] P(A∩B)=P(B) -P(A∩B) を利用。 Emp 事象であるから P(A)=1-P(A)=1- りがあるから MET ANB (2) A,Bのどちらか一方だけが起こるという事象は、A∩Bまたは ANB (互いに排反) で表される。 [2] 少なくとも1つが6の目で、出た目の和が偶数となる 場合には, (2,6),(4,6,6,2),(6,4),(6,6の5通 5 5 6236 = D(R)- P(ANB)** P(A∩B)= [5] ANB 解答 = [1] [1] A の余事象 A は, さいころの目が2つとも6でない | ⑩ 少なくとも・・・・・・・ HERON 52 11 DURS には余事象が近道 MA - the 6² 合1 62 36( = A' 基本43,44 ANBAnB ANB 369 ANBの要素を数え上げる tist.is 万針。 (検討) 指針の図を、次のように表す こともある。 2章 7 確率の基本性質

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

ε-δ論法による証明がわかりません。 (1)の波線部の不等式がどこから出てくるのか教えていただきたいです。 ε/2Mというのはどこから出てきたんですか?

基本例題031-8 論法による基本定理の証明 下の指針の定理について, 以下の問いに答えよ。 (1) 下の, 関数の極限の性質の [2], および [3] を,e-8 論法を用いて証明せよ。 (2) 下,合成関数の極限をe-8 論法を用いて証明せよ。 指針定理関数の極限の性質(スロー(x)=(x)ノー 関数 f(x), g(x) および実数 α について, limf(x)=a, limg(x) =β とする。 [1] lim{kf(x) +1g(x)}=ka+1β (k, lは定数) x→a x→a [2] limf(x)g(x)=aB [the lim (1/(x) 定理 合成関数の極限 4179744571 x→a x→b YOU 関数 f(x), g(x) について, limf(x)=b, limg(x)=αとし, g(x)はx=6で連続とする。 このとき,合成関数 (gf) (x) について, lim (gf) (x)=α が成り立つ。会場 x→a x→a x→a x→a xx→a [3] lim x→a f(x) a g(x) B E-8 論法による証明であるから、 「 e を任意の正の実数とする」から始める。そして,これに 対応するの値を検討する。 次のような方針で証明を進める。 f(x) (1) 1 1 の極限を求める問題は、f(x) x- g(x) として g(x) g(x) る。 関数の値と極限値との差の絶対値を評価し,途中でどのような仮定が必要になるかを考 05.10 える。 So I had lot (2) 合成関数g (f(x)) の値を g (f(a)) に近づけるには,gの中にある f(x) をどの範囲で x→a == (ただし,β≠0) eを任意の正の実数とする。 limf(x) =α であるから, ある正の実数品。 が存在して, ()+6011-5 0<|x-a|<品。 であるすべてのxについて|f(x)-α|<s が f(a) に近づければよいかを考え,それに応じてxをどの範囲でαに近づけるか考える。 1o C (+18 解答 (1) 性質 [2] の証明 成り立つ。このとき,α-e<f(x)<α+ であるから |f(x)|≦max{|a-el, |a+c|} S3A/ ここで,M=max{|α-el, |α+el, |β|} とおく。 e≠0 より |a-el, late | の少なくとも一方は0でない から M>0 limf(x) =α であるから,ある正の実数 Ô が存在して E 0<|x-a|<ふであるすべてのxについて|f(x)-al< AMICIAS が成り立つ。 limg(x) =βであるから、 ある正の実数 82 が存在して 1 B を示す問題に帰着させ e-8 論法による証明の 開始。 Jel 4

解決済み 回答数: 1
1/5