学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数Iの三角形の面積についての質問です。 なぜ∠BACはsinだと分かるのですか? 分かる方いたら教えて欲しいです🙇‍♀️

c=2RsinC=24sin120° =2.4.3 =4√3 basin 15 (√6-√2).2.2 531 2 正弦定理から a b sin A sin B 2R よって a b=sin B.. sin A SU =sin 60°.. 2 (2)CD=AB=2であるから,三角形 CDB の面積Sは S=1125sin120°= 5/3 √√2 √√2 =√3-1 2 sin 45° よって,平行四辺形ABCD の面積は ST- √3 2 8- 2 1 √√2 =√3-√2=√6 1 a 1 2 R= 2 sin A 2 sin 45° =√2 41(1) 余弦定理から a2=62+c2-2bccos A 2S=5√3 別解 Aから辺BCに垂線 AH を下ろすと、 B=180°-120°=60°から AH=ABsin60°=2√3 よって,平行四辺形において, 底辺 BC に対する高さが AH であるから, 求め る面積は BCXAH=5√√3 =32+(√2)2-2・3・√2 cos 45° ar S44 (1) (15+21+13+19+20)= 88 =9+2-6√ √ =5 5 =17.6 a0 であるから a=√ =√5 (2) 余弦定理から cos B= c2+α²-b2_82+52-72 2ca 40 1 2.8.5 よって B=60° 答 (2)(45+38+52+54+73+27+25+42) 356 =44.5 8 2.8.5 (3) {2+9+6+(-9)+1 +(-5)+6+1 +2 + (− 42 (1) 2=25, 62+c2=25 から a2=b2+c2 ゆえに A=90° よって, ∠Aは直角である。 (2) a2=64,62+c2=61 から a²>b²+c² - 10 -=1 45 (1) データを小さい順に並べると 8, 14, 22, 48, 97 データの大きさは5であるから, 中央 3番目の値である。 ゆえに A > 90° よって, 中央値は 22 よって、 ∠Aは鈍角である。 43(1) A=180°-(B+C) =180°-(30°+105° から? =45° (2) データを小さい順に並べると 11, 20, 20, 38, 39, 50, データの大きさは7であるから, 4番目の値である。 よって、 三角形ABC の面積は よって、 中央値は 38

未解決 回答数: 1
数学 大学生・専門学校生・社会人

文章題なのですが、解説の青線部分がよくわかりません…т тどなたかどのような意味が教えて頂けないでしょうか…!

市役所上・中級 No. 9/21 B日程 判断推理数量関係 237 判断推理 30年度 「ある店で、りんご150円, なし120円, オレンジ100円で販売している。 AとBの購入について ことがわかっているといえるのはどれか。 Aは1310円分,Bは850円分買った。 AとBの買ったなしの個数の差は2個であった。 ・Aの購入個数はオレンジよりりんごのほうが多かった。 1 Aはりんごを5個買った。 2Bは全部で11個買った。 3Bはオレンジとりんごのみを買った。 4 Bはオレンジを最も多く買った。 5 AとBでオレンジを5個買った。 解説 1つ目の条件より,Aの合計で十の位の10円より, 10円を作ることができる「なし」を何個買 ったかを考える。10円を作るには,十の位を1か6にしなければいけないが,「なし」の十の 位である2で,奇数である1は作れないので,十の位を6にする必要がある。このことより, Aは「なし」を3個,8個, 13個, 16個…………となるが, 13個以上買うと 「なし」だけで1310円 を超えてしまうので, 3個か8個となる。 人の 同様にBの十の位が5なので, Bは 「なし」 を0個, 5個 10個…となるが,10個以上買う と「なし」だけで850円を超えてしまうので, 0個か5個となる。 2つ目の条件より、 「なし」の個数の差が2個なので,Aが3個,Bが5個と確定する。 B は残り850-120×5=250円分となるので,りんご1個, オレンジ1個と決まる。 数学 物理 化学 生物 地学 文章理解 判断推理 なし(120円) りんご (150円) A 3個 (360円) オレンジ (100円) 950円 合計 1310円 B 5個 (600円) 1個(150円) 1個(100円) 850円 Aは残りは950円となる。この50円を作るにはりんごを奇数個買ったことになる。りんごと オレンジの個数の可能性は以下のようになる。 りんご 1個 3個 5個 オレンジ 8個 5個 2個 しかし、3つ目の条件より, りんごのほうを多く買っているので,りんごが5個, オレンジ が2個と確定する。 以上より,正答は1である。 正答 1 推

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

文章題、操作の手順の問題です。解説の意味が最初から全くわからないのですが、どなたかわかりますでしょうか…?解説して頂けるとありがたいです…

市役所上・中級 A日程 No. 242 判断推理唄 操作手順 25年度 A~Dの4人があみだくじを行った。 4人のスタート位置は図のよう であり,Aは1段目, Bは2段目, Cは3段目, Dは4段目にそれぞ れ横に1か所だけ線を書き加えた。その結果,当たりとなったのはDO であった。アイのことがわかっているとき,正しいものは次のうち どれか。 アDは,横の線を書き加えなくても当たりだった。 イCは,Aが横に線を書き加えた位置の真下に横の線を書き加え れば当たっていた。 AはCよりも左側の位置に到達した。 A 1段目 A 2段目B 13段目 C 14段目 市役 3X にな 3にボ の 数学 物理 5/18 1 2Bが横に移動したのは2回だった。 3CはBよりも右側の位置に到達した。 4DはBよりも右側に横の線を書き加えた。 5Aが横に移動したのは3回だった。 当たり 解説 Dは横の線を書き加えなくても当たりだったのだから, Dは4段目の最も左側に横の線を書き 加えたことになる。そして, Dが当たるためには,Dは (1) 横に1回も移動しない (2) 左 右に1回ずつ移動する, (3) 左右に2回ずつ移動する、のいずれかでなければならないが,D が書き加えた線が最も左側であることから, 左右に2回ずつ移動して当たりとなることはな い。そうすると,Dが書き加えた線が最も左側で,Dが当たりとなるのは10通りあることにな る。 このうち、条件を満たすのは下図の場合だけであり,この1通りに確定する。このとき, 4人の到達位置は左からC, B, D, A (スタート時の位置関係と同じ)となる。 CBDA 生物 地学 文章理解 判断推理 よって、正答は2である。 O C (M) 1-Exa Jos 正答 2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

3)を解いてみたのですが計算方法が合ってるか分かりません。 おそらく与式は2枚目のようになると思います。 2)の解答に自信はないですが以下の通りです。 A1=0,A2=1/2,B1=1/2,B2=1,C1(u)=u, C2(u)=1-u また、2)についてもし間違いがあれば... 続きを読む

S1. n を自然数x,yを実変数として,以下の設問に答えよ. 1) 式 (S1.1) を用いて, 式 (S1.2) の広義積分Iを無限級数で表すことを考える. この無限級数の第n項 αm を求めよ. -* (|| < 1) (S1.1) n=0 1 = = L L 1 1 dady=Σa (S1.2) 10 - xy n=1 2) 式 (S12)のIを(x,y)= (u-vu+g) で変数変換をしたうえで, 式 (S1.3) の ようにL, I2に分解する. ただし, 式 (S1.3) は式 (S14), S1.5), (S1.6) を満 たす.このとき,下式の A1, B1, Ci (u), A2, B2, C2(u), Dにあてはまる定数ま たは関数をそれぞれ答えよ. ただし, A1 A2 とする. I=h+I2 (S1.3) ・Bi ·C₁(u) = - AL B2 g(u, v)dv du (S1.4) 0 C2 (1) = g(u, v)dv du tv) du (S1.5) (S1.6) I2 g(u,v) = 0 D 1-2 +02 3)問2) のの値を求めよ. 必要ならば, 式 (S1.7), (S1.8) を用いてよい。 d = dx 1 (arctanz) (S1.7) 1+α2 1 (|x| < 1) (S1.8) 1-2-0-8(1+3) (1-22) (1 4)問2)の12の値を求めよ. 必要ならば, 式 (S1.7), (S1.8), (S1.9) を用いて よい. 1- cos x tan sin a 2-2 I (sinz≠0) 5) 式 (S1.2) の無限級数の和を求めよ. (S1.9)

回答募集中 回答数: 0
1/7