学年

教科

質問の種類

数学 大学生・専門学校生・社会人

先生が答えをくれません。 一応自分なりの答えは出したのですが、数学(計算も)あまり得意ではなく、自身がありません。 模範解答を作成していただきたく、質問を作成させていただきました。 何卒宜しくお願い致します。

No1 1. 次の関数fが I = [a,b]上可積分であることを仮定し、積分の値ff を求めよ. (i) f(x) = x, I = [0,a] (ii) f(x) = x2, I = [0,a] (iii) f(x) = e, I = [0, a] No2 1. (二進小数) 実数 r∈ [0, 1] が 1 1 T= r = 012 +0222 +..., (ここで a1,a2,a3=0,1) と表示されるとき、 r = 0.a1a203・・・ と書いて、 これをの二進数表示という. た だし、末尾に1が続く場合は切り上げて、 0 の続く表示としておく. たとえば、 12 の二進数表示は0.1 となる. 11 ならば、 0.01 である. (1) 1/3を二進数表示せよ. No3 1. 次の二重積分の値を求めよ. (1) (2²³ +y³)dxdy, 2) 10 (ポージ) andy, (2) No4 2. 次の3重積分を求めよ. (1) [√√ (x² + y² + 2²)²drdydz, (V = {(x,y,z)|0≤x,y,z ≤1}) (V = {(x, y, z)|x² + y² + 2² <a²}) fff, z²dxdydz, J 1 +9323 1. 次の二重積分の値を求めよ. offe (2³+y³)dxdy, (2) (2² - y²)dxdy, (2) (D={(x,y)|0≤x,y≤1}) (D={(x,y)| -1≤x≤1,1≦y<2}) (D={(x,y)|0≤x,y<1}) (D={(x,y)| -1≤x≤1, 1≤y≤ 2}) 2. 次の3重積分を求めよ. (1¹) ff (2² (22+y^2 +22)2dxdydz, (V = {(x,y,z)(0 ≤x,y,z <1}) [[[³drdydz, (V = {(x, y, z) x² + y² + 2² ≤a²})

未解決 回答数: 0
数学 大学生・専門学校生・社会人

この問題の[4-1](1)についてですが示すまでの理解はできるんですが三角不等式を用いて示すっていうのがよく分からないです💦 ここはどういう感じの証明を書けばいいのでしょうか? また、他の問題もどうやって解くのか教えてほしいです! よろしくお願いします🙇‍♂️

[4-1] {an}neN>{bn}neN CR, a,be R, と仮定し,0に対し、 をみたす Ne, Ne∈Nが与えられているとする. このとき,次を示せ . (1) |6| ≤ 1 + |6| for all n∈Nf.. (Hint. bn= (bm-b) +6 に対して三角不等式を用いよ) THE (2)>0 に対し, 61 (E) = 1+ |a|+|b| と、 Jan - all ≤efor alline N, 16-6 ≤e for all neNA. (3) (2) において ana, bnb asn→∞ (従って, |0| ≤1+|6|,|0-al≤e1 (c), 10-bel (e) for all n ∈NN.. (従って, anbabasn→∞ が成り立つ.) (3) (2) において, 1 on lanbn-abl≤lan-all bnl + |al|bn-b|≤e for all ne NN. E = jare. >0,Ne=max{N1, Na(e), Na(e)} EN とおく [4-2] [41] において, {bn}neN CR\{0}, b ∈ R\{0} とするとき, ([4-1] の (前提の)記 号の下で)次を示せ . (1) Eo= = 10/11 > >0とおくと befor alline No. (Hint. b= (b-bm) +6m に対して三角不等式を用いよ.) (2)>0に対し,1 (€)=260,Ne=max { Neo, Na(e)}EN とおくと, 1 ≤ —, |b₁-b| ≤ €₁(e) for all n € N₁₂. NN・ |bn| E0 27/0 b Ibn-b) ≤ 1 | 12/23 - 12/10 = <e for all n E NN bn 16m-61 |b||b₂| asn→∞ が成り立つ) [bn] ≤ 1+|bl

回答募集中 回答数: 0
1/5