学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学検定3級の問題です 標本平均の標本分布とはなんですか? 解説の意味がわかりません 助けてください!

DE SAHN 問18 母平均 μ, 母分散をもつ母集団から,大きさn(≧2) の標本としてXi....,Xn を無作為抽出し,それらの標本平均X=-Xiを考える。 このとき, 標本平均の性 ni=1 質として、次の①~⑤のうちから最も適切なものを一つ選べ。 28 ① 標本平均は必ず母平均μ に近い値をとる。 ② 標本平均の標本分布の期待値は必ずμとなる。 ③ 標本平均の標本分布の分散は必ずとなる。 ④ 標本平均の標本分布は必ず正規分布になる。 標本平均の標本分布はnに依存しない。 問19 あるパン屋で製造されているあんパンの重さの平均μ (g) を調べるために, 10 個のあんパンの重さに基づき信頼度 (信頼係数) 95%の平均の信頼区間を求めるこ とにした。ただし,あんパンの重さは独立に平均 μ 標準偏差2の正規分布に従っ ていると仮定する。 このとき,次の I~ⅢIの記述を考えた。20000円 0002 I. 信頼度を95%から99% に変えると, 信頼区間の幅は狭くなる。 ため の II.重さを測るあんパンの個数を10個から50個に増やすと, 信頼区間の幅は狭 くなる。 comm Ⅲ. 見た目の小さいあんパンだけを10個集めると、必ず信頼区間の幅は狭くな る。 この記述 I~ⅢIに関して、次の①~⑤のうちから最も適切なものを一つ選べ。 29 ① Ⅰ のみ正しい ④ ⅠとⅡIのみ正しい Ⅱのみ正しい IとⅢのみ正しい ⅢIのみ正しい

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学の「微分積分」で出題された周波数の課題です。 (1)だけでもいいのでわかる方いらっしゃったら教えてください。

2 以下の説明を読み、 設問 (1) (6) 答えよ. 授業中に周波数を少しずらした二つの音を発生させて、唸りが聞こえるこ とを実演した.この現象を数学的に記述してみよう。 音とは、空気の振動が空気中を伝播して耳に届くことで認識される自然現 象である. tを時刻 (単位:秒) として、振動がy=sin (ct) (cは定数) の 形で表される波を正弦波と呼ぶ。 正弦波の周波数 (単位:Hz=1/秒) とは 「波が1秒間に何回振動する か」 を表す量である. 例えば sin (2t) は 「周波数1の正弦波」 であるが、 この音波は人間の耳には聞こえない。 人間の可聴域はだいたいf=20Hz 15,000Hz であると言われている。 (1) 周波数 f(Hz) の正弦波を時刻t (秒) の関数で表せ。 (ヒント: f は正の整数であると考え、 t=1のときに sin の中身が 「f回回転 「した角度」を表すように定数を定めれば良い) さて, 音波は重ね合わせの原理が成り立つ。 つまり、二つの地点から発せ られる音波がある地点Pでそれぞれ a(t), b(t) で表されるとき, それら を同時に発生させると P では a(t)+b(t) という音波となる. いま周波数 f=400Hzを中心として、そこから前後に1Hz ずらした二つ の周波数 f=399 Hz, fz = 401Hz を考えよう。 (2) 周波数ffzの正弦波を同時に発生させたときに観測される音波 a(t) を二つの三角関数の和の形で表せ。 (式になったの値は代入 しなくて良い。) (3) h = f1 = f +1 であることと、 三角関数の加法定理を用 いて、上の式を二つの三角関数の積(の定数倍) の形で表せ。 (4) この積に現れる二つの三角関数のグラフの概形をt=-1からt= 1までの範囲でそれぞれ描け. (一方は正確に描くのは人間には 不可能なので雰囲気で良い。 もう一方は正確に描くこと.) (5) (4) を用いて音波 α(t) の概形を描け. (6) この唸りの周期は何秒か? 以上.

回答募集中 回答数: 0
1/4