学年

教科

質問の種類

数学 大学生・専門学校生・社会人

すみません、わかる方助けて欲しいです。

下記の問題について解答しなさい。 1.10 進数で表現された自然数を9で割ったときの余りを調べる方法として、各桁の数字 を全て加えた数の余りを調べればよいことが知られている。 例えば、 数 695973であるとき、 6+9+5+9+7+3=39 であり、 39 を9で割った余りは3であるので 6959739で割った余 りは3である。 この方法が成り立つのはなぜか、 講義中に説明した合同式の性質を用いて 一般的に説明しなさい (数695973 の場合についてのみ説明するのではありません)。 (Hint. 10 進数で表記された数の各桁は10のべき数の位である。 例えば、数123は1 × 102 + 2 × 101 + 3 の意味である。 また、 10=1 (mod9) に注意する) 2. 数 9798 と 4278 の最大公約数をユークリッドの互除法を用いて求めなさい。 途中の計 算式も示すこと。 3. 一次合同式31x=5 (mod247) を解きなさい。 4. 下記の連立一次合同式を解きなさい。 x=1(mod3) x=2(mod7) x=3 (mod11) 5. 法p = 11 であるとき、 加算と乗算の演算表 (教科書 p.18 の表 2.2のような表) を作成 しなさい。 また、 各非零元の乗法における逆元を示しなさい。 6. 法q=512における既約剰余類の要素の数を求めなさい。 7. 以下の値を求めなさい (Hint. オイラーの定理を利用する)。 13322 (mod 600)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青のところまでは分かるのですが、その後のAの指数m-1とa1 (この1ってところが分からない)の関係性を教えて欲しいです。スタートがAmではなくてAm-1だったらm-1の時にa0が対応するのは分かるのですが、その理由がわかりません。

① このファイルにはアクセス許可が制限されています。 部の機能にアクセスできない可能性があります。 - アクセス許可の表示 × m を0以上の整数とする。 10m 秒の時点で A,Bを訪れているユーザー数を am人, bm人 とする。そうすると調査結果から, 時刻に伴って変化する数列{am}と{bm}ができて,a=100, bo = 200および, Jam+1=0.9am+0.26m lbm+1=0.1am+0.8bm を満たす。これは一種の漸化式であるが, 2つの数列をまたがって表現されたもので 連立 漸化式といわれる。 その形は連立1次方程式と似ている。 そのため行列を用いて, (am+1) = (0.9 0:2) (bm) 0.2/am 0.8 0.9 0.2\ と表せる。ここで, A= 0.1 とおくと, 10m 秒後の人数の分布は, 0.8. ram² am-2 = A =A A =A2 (am-2) m m-1 かる! ao Am (61) = Am (60) = 4 (200) " で計算することができる。 最後の式には, Am乗が登場している。そこで続いて, 行列のべき 乗を考えてみよう。 bm-21 \bm-2 = Am-1 == 注意.上の行列4は行ベクトルの和が, (0.9 8,2) (0.1 0.8) 15 13 と、すべての成分が1の行ベクトルになる。このような、行ベクトルの和が1だけの行ベク トルとなる行列を確率行列という。確率行列は、分布状態の変化を表すときなどに現れる重 要な行列である。 2.2.2 行列のべき乗 すでに私たちは、 対角行列のべき乗が簡単に求められることを25ページで学んでいるの で,この考え方をもとに行列のべき乗を求めることを考える。 O Mi +

解決済み 回答数: 1
1/13