学年

教科

質問の種類

数学 大学生・専門学校生・社会人

右に書いている解き方ではダメですか?

A 889 18A4 【解説】 平面図形からの出題である。 任意の △ABCの外側に三つの正三角形 △ABD, BCE, CAF をかき,それ ぞれの正三角形の重心をG,H,Iとするとき, △GHIは正三角形となる。 この三角形をナポレオンの三角形とい う。また,AH, BI, CGは1点で交わる。この点を第一ナポレオン点という。 第4問 場合の数と確率 【解法 】 odnos 賞 (1) 太郎さんの袋にはグー () が1枚, チョキ () が4枚,花子さ んの袋にはパー (1) が1枚, チョキ () が4枚入っているから, 1回目の勝負で太郎さんが勝つのは, (太郎, 花子)のカードの取り出 し方が () ()のときである。 よって、求める確率は1/13×1 4 4 1 8 + × 5 5 25 5 CE) 00005 1回目の勝負で花子さんが勝つのは, (太郎, 花子) のカードの取り出 し方が (,)のときである。 よって、求める確率は1/3x1/2= 25 (2)3回目の勝負で太郎さんが勝つのは、2回のあいこの後, (太郎,花 子)のカードの取り出し方が (,),( 図)のときである から、求める確率は (1)×(×) (4)×(×) × + 3 3 2-3 4 × = 3 25 3回目の勝負で花子さんが勝つのは、2回のあいこの後, (太郎, 花子) のカードの取り出し方が(,)のときであるから、求める確率は 4 5 13 1 1 3 3 25 DA as 00 AB がを (3)2回目の勝負で太郎さんが勝つ確率は 3 3 =(x+1/x1)x(x) 4 4 4 4回目の勝負で太郎さんが勝つ確率は 6 25 1 (++)× (׳)× (2×)× (±±±±±)- X 12 X 2 12 25 25 2回目の勝負で花子さんが勝つ確率は 4 1 25 4回目の勝負で花子さんが勝つ確率は 3 2 12 + (1x16)x(x1)x18x1)x/1/2×1/2)= 5回目の勝負で花子さんが勝つ確率は 1 25 -59 中 pa な No.1!! 校

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

教えてほしいです、、🥲 中等教科教育法数学①です、! 回答の流れも一緒に教えてくださると、本当にすごく助かります、、💦 ②もあげるので、そちらもお時間あれば答えてくださると嬉しいです😖

中等教科教育法数学 ⅡI 第1設題 2 3 14 15 6 18 次の無理数の分母を有理化せよ. 1 (1) (2) 1+√5 +√7 1 2-35 (3) 1 1+√3+2√9 V6v3 + 10 - V6√3-10 の値を簡単にせよ. 次の問いに答えよ. (1) 多項式 + 34 + 53 + 522 +3 + 1 を実数係数の範囲で因数分解せよ. (2) 多項式 100 + 275 + 32:50 + 4225 + 5 を 2² + +1 で割った余りを求めよ. 実数, y, ²x2+12+22=02, (aは正の定数) を満たして変化するとき, 3 + y + 2-3xyzの 値の最大値、最小値をそれぞれ求めよ. 次の漸化式で定まる数列 {an}の一般項を求めよ : an+2=23/an+1 a² Qo=1, a1=2. f(x)=2x3 +32-2 とする. このとき, 次の合成関数の値は, 10 進表記の下で,1000個以上の9を含 むことを示せ: f(f(...ƒ(9))). 10個 △ABC において, AB = 5, BC = 7, CA = 8 とする. 次の問いに答えよ. (1) 角のうち1つであることを示せ . (2) △ABC の各頂点を各辺上にもつ正三角形DEF を考える.但し, 頂点 A, B, C はそれぞれ辺 EF, DF, DE 上にあるとする. このとき, 辺 EF の長さの最大値を求めよ. f(x)=x-10x2+kx とする.但し, k は正の実数とする. (1) 方程式f(z)=0が3つの実数解をもち, それらの解が互いに1以上離れているためのんの条件を 求めよ. (2) (1) の条件を満たすんのうちで, 曲線y=f(x) とz軸とによって囲まれる図形の面積を最小にす るものを求めよ. 19 100円 105円の硬貨合計 4個を用いて B 円払うとする. ある A, B について, 相異なる支払い 方法が2通りあるようなAの最小値を求めよ. |10| 次の問いに答えよ. (1) 1からnまでのn個の自然数のなかから, 相異なる任意の2数をとってつくる, あらゆる積の和 を求めよ. (2) 1からnまでのn個の自然数のなかから, 相異なる任意の3数をとってつくる, あらゆる積の和 が次で与えられることを示せ: 1372(n+1)^(n-1)(n-2).

未解決 回答数: 1
1/4