学年

教科

質問の種類

数学 大学生・専門学校生・社会人

至急です (4)のcを教えてください

問題1 連立1次方程式 Az=b について, 以 (7) 係数行列 A の階数を答えよ. 下の 1から 3 に当てはまるものを答 rank A = 7 えよ.ただし, 1 0 -1 0 -2 1 (8) 拡大係数行列 [46] の階数を答えよ. rank [Ab = 8 0 1 1 0 1 -2 A = b -1 0 1 1 1 3 (9) 次の文の 9 「には,「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 2 1 -1 0 -3, 1 とする. (1) 係数行列 A の階数を答えよ. rankA= 1 (2) 拡大係数行列 [ Ab ] の階数を答えよ. rank[Ab]=| 2 方程式 Az=bは解を 9 問題4 以下の 10 |から 21 に当ては まるものを答えよ . (a) 問題1から問題3の方程式で、解が存在する (3)次の文の 3 「には, 「もつ」か 「もたない」 が一意に定まらないものは問題 10 であ のいずれかが入る. ふさわしい方を答えよ. る. 10 に当てはまる問題番号を数字で答 えよ. 方程式 Ax = bは解を 3 問題2 連立1次方程式 Aæ = bについて 以 下の 4から 6 に当てはまるものを答 えよ.ただし, -20 30 A = 1 -2 121 b = 2 (b) 問題 10 の解は x=vo+C1v1+C202 と表される.ここで, C1, C2 は,任意の定数で あり, ベクトル 20, 1, 02 は, 11 " 2 -4 1 52 とする. 0 5 vo= 12 0 (4) 係数行列 A の階数を答えよ. rankA= (5) 拡大係数行列 [ Ab]の階数を答えよ. 13 4 14 17 1 0 01= 15 02= 18 , rank[Ab] = 5 0 1 (6)次の文の 6 には, 「もつ」か 「もたない」 のいずれかが入る. ふさわしい方を答えよ. 16 19 と表される. 方程式 Azbは解を 6 問題3 連立1次方程式 Aæ=bについて,以 下の7から 9 に当てはまるものを答 えよ. ただし, (c) 問題 10 |の行列Aを係数行列にもつ同 次方程式 Az=0を考える. この方程式の解は, 20 である.また,その解はæ= 21 と表される. 20 には,「自明」または「非自明」のい ずれかが入る. ふさわしい方を選んで答えよ. 2 3 -1 A = -1 2 2 b = • 21 1 1 1 -2 とする. |に当てはまるものとして,ふさわし いものを以下から選んで記号で答えよ. (ア)(イ) U (ウ) C101+C202

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

なぜ黄色の線のようなことになるのでしょうか? tan(90°-α)=1/tanαとなることも分かりません。 すみませんが丁寧に解説していただけると助かります。🙏

3. LABC めよ。 基本12 a+b+cを これを書き になる。 のみを 用する。 ら、 きで 重要 例題 162 図形への応用 (2) 0000 点Pは円x2+y²=4上の第1象限を動く点であり, 点Qは円x2+y2=16上の第 2象限を動く点である。ただし,原点0に対して,常に ∠POQ=90° であるとす る。また、点Pから x軸に垂線PHを下ろし,点Qからx軸に垂線 QK を下ろ す。更に ∠POH=0 とする。このとき, AQKH の面積 S は tan0のと き最大値をとる。 [類 早稲田大〕 重要 159 指針> AQKH の面積を求めるには,辺KH,QK の長さがわかればよい。そのためには,点P と点 Qの座標を式に表すことがポイント。 半径rの円x2+y2=2上の点A(x,y) は, x=rcosa, y=rsina (aは動径 OA の表 す角) とおけることと,∠POQ=90°より,∠QOH=∠POH+90° であることに着目。 解答 OP= 2,∠POH=0であるから, Pの座標は (2 cos 0, 2 sin() 0Q=4,∠QOH=0+90° であるから,Qの座標は (4cos (+90°), 4sin (0+90°)) すなわち (4sin 0, 4cos 0 ) ただし 0°<0<90° ゆえに -1/213KHQK-2/12 (2cos0+4sin0) 4cos0 =2(2cos20+4sin Acos0 ) S= ゆえに =2(1+cos20+2sin20)=2{√5 sin (20+α)+1} = 1 √5' 2 ただし,αは sinα= √5 0°<< 90°から (0°<) a<20+a<180°+a (<270°) よって,Sは20+α=90°のとき最大値2(√5+1) をとる。 1 20+α=90°のとき tan20=tan (90°-α)= tan a =2 cos α = 2 tan 0 1-tan²0 0° 090° より tan 0 0 であるから tan0= , よって COS Q sin a =2 tan 20+ tan 0-1=0 1+√5 2 三角関数の合成。 0°<α <90° を満たす角。 α は具体的な角として表す ことはできない。 K sing= 練習 ② 162 に対して、次の条件 (a), (b) を満たす2点B, C を考える。 yA 2 O 4 0H2x P COS Q= √5 <tan 0 についての2次方程 式とみて解く。 (a) B はy>0 の部分にあり,OB=2 かつ∠AOB=180° -0である。 (b) Cはy<0 の部分にあり,OC=1かつ∠BOC=120° である。 ただし △ABC は 0 を含むものとする。 (1) △OAB とAOACの面積が等しいとき, 0 の値を求めよ。 2 /5 0を原点とする座標平面上に点A(-3,0)をとり, 0°<<120°の範囲にある ののの 253 4章 12 三角関数の合成 27

回答募集中 回答数: 0
1/9