学年

教科

質問の種類

数学 大学生・専門学校生・社会人

多様体を構成するために、位相空間に完全アトラスを導入するところで質問です。 完全アトラスを導入するメリットとして、この文章の下線部を「異なる座標系を用いたのに同じ計算ができてしまうという問題が解消される」解釈したのですが、そこがよくわかりません。座標系を変えて計算する... 続きを読む

1 Two n-dimensional coordinate systems & and ŋ in S overlap smoothly provided the functions on¯¹ and ŋo §¯¹ are both smooth. Explicitly, if : U → R" and ŋ: R", then ŋ 1 is defined on the open set ε (ur) → ° (UV) V and carries it to n(u)—while its inverse function § 4-1 runs in the opposite direction (see Figure 1). These functions are then required to be smooth in the usual Euclidean sense defined above. This condition is con- sidered to hold trivially if u and do not meet. Č (UV) R" Ĕ(U) n(UV) R" S n(v) Figure 1. 1. Definition. An atlas A of dimension n on a space S is a collection of n-dimensional coordinate systems in S such that (A1) each point of S is contained in the domain of some coordinate system in, and (A2) any two coordinate systems in ✅ overlap smoothly. An atlas on S makes it possible to do calculus consistently on all of S. But different atlases may produce the same calculus, a technical difficulty eliminated as follows. Call an atlas Con S complete if C contains each co- ordinate system in S that overlaps smoothly with every coordinate system in C. 2. Lemma. Each atlas ✅ on S is contained in a unique complete atlas. Proof. If has dimension n, let A' be the set of all n-dimensional coordinate systems in S that overlap smoothly with every one contained in A. (a) A' is an atlas (of the same dimension as ✅).

未解決 回答数: 0
数学 大学生・専門学校生・社会人

数Iの2次方程式についての質問です。 マーカーで引いてある数字はどこから出てきたのでしょうか? 分かる方いたら教えて欲しいです🙇‍♀️!

右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺AB, AC 上に AD AE となるように2点D,Eをとり,D,Eから辺BCに 垂線を引き、その交点をそれぞれF,G とする。 長方形 DFGE の面積が20cm² となるとき,辺FG の長さを求めよ。 F CHART & SOLUTION 文章題の解法 基本 66 ① 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGE の面積をxで表す。 そして、 面積の式を =20 とおいた の2次方程式を解く。 最後に, 求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 答 FG=x とすると, 0<FG<BC であるから A 0<x<20 ① D また, DF=BF=CG であるから 2DF=BC-FG B 20-x よって DF= 2 長方形 DFGE の面積は DF・FG=20-x.x 2 20-x ゆ x=20 2 整理すると これを解いて x2-20x+40=0 x=-(-10)±√(-10)2-1.40 =10±2√15 ここで, 02/15 <8 から 10-8<10-2/15 <20, 2<10+2/15<10+8 よって、この解はいずれも ①を満たす。 したがって FG=10±2√15 (cm) E 定義域 ←∠B=∠C=45° であるか 5, ABDF, ACEG G C 角二等辺三角形。 xの係数が偶数 → 26′型 3章 9 2次方程式 解の吟味。 0<2√15=√60<√64= =8 単位をつけ忘れないよう に。

未解決 回答数: 0
数学 大学生・専門学校生・社会人

文章題なのですが、解説の青線部分がよくわかりません…т тどなたかどのような意味が教えて頂けないでしょうか…!

市役所上・中級 No. 9/21 B日程 判断推理数量関係 237 判断推理 30年度 「ある店で、りんご150円, なし120円, オレンジ100円で販売している。 AとBの購入について ことがわかっているといえるのはどれか。 Aは1310円分,Bは850円分買った。 AとBの買ったなしの個数の差は2個であった。 ・Aの購入個数はオレンジよりりんごのほうが多かった。 1 Aはりんごを5個買った。 2Bは全部で11個買った。 3Bはオレンジとりんごのみを買った。 4 Bはオレンジを最も多く買った。 5 AとBでオレンジを5個買った。 解説 1つ目の条件より,Aの合計で十の位の10円より, 10円を作ることができる「なし」を何個買 ったかを考える。10円を作るには,十の位を1か6にしなければいけないが,「なし」の十の 位である2で,奇数である1は作れないので,十の位を6にする必要がある。このことより, Aは「なし」を3個,8個, 13個, 16個…………となるが, 13個以上買うと 「なし」だけで1310円 を超えてしまうので, 3個か8個となる。 人の 同様にBの十の位が5なので, Bは 「なし」 を0個, 5個 10個…となるが,10個以上買う と「なし」だけで850円を超えてしまうので, 0個か5個となる。 2つ目の条件より、 「なし」の個数の差が2個なので,Aが3個,Bが5個と確定する。 B は残り850-120×5=250円分となるので,りんご1個, オレンジ1個と決まる。 数学 物理 化学 生物 地学 文章理解 判断推理 なし(120円) りんご (150円) A 3個 (360円) オレンジ (100円) 950円 合計 1310円 B 5個 (600円) 1個(150円) 1個(100円) 850円 Aは残りは950円となる。この50円を作るにはりんごを奇数個買ったことになる。りんごと オレンジの個数の可能性は以下のようになる。 りんご 1個 3個 5個 オレンジ 8個 5個 2個 しかし、3つ目の条件より, りんごのほうを多く買っているので,りんごが5個, オレンジ が2個と確定する。 以上より,正答は1である。 正答 1 推

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

分数の問題です。速さの問題を解いていて、途中までは立式できたのですが、①の式が②になるのがよくわかりません。そういう公式があるのでしょうか…??🥹

市役所上・中級 No. B日程 319 数的推理 流水算 元年度 ルで泳ぐが,Bの静水時の速さはAの静水時の速さの2倍である。 ある地点からAは時計回り 1周が500m の流れるプールがある。 流れは時計回りに流れている。 AとBの2名がこのプー Bは反時計回りに泳ぎ始めたところ, スタート地点から時計回りに200mの地点でAとB が出会った。 12倍 Aの静水時の速さは,プールの流れる速さの何倍か。 23倍 34倍 45倍 56倍 数学 物理 化学 生物 地学 文章理解 判断推理 数的推理 解説 Aの静水時の速さを xm/分, B の静水時の速さを2xm/分, プールの流れる速さを ym/分とお Aは時計回りに泳ぐので,プールの流れる速さのym/分が加算されるので,Aの速さは x+ y[m/分],Bは反時計回りに泳ぐので, 2x-y〔m/分〕 となる。 スタート地点から時計回りに 200mの地点で出会ったので, Aは200m,Bは300m 泳いだことになる。この距離を泳ぐ時間 が等しいので次の式が成り立つ。個 このまではつくれる。 200 300 +01 何でこう変形??? x+y 2x-y ② 200(2x-y)=300(x+y) 4x-2y=3x+3y x=5y これよりAの静水時の速さである.xm/分はプールの流れる速さであるym/分の5倍であるこ とがわかる。 よって、正答は4である。 正答 4

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

文章題、操作の手順の問題です。解説の意味が最初から全くわからないのですが、どなたかわかりますでしょうか…?解説して頂けるとありがたいです…

市役所上・中級 A日程 No. 242 判断推理唄 操作手順 25年度 A~Dの4人があみだくじを行った。 4人のスタート位置は図のよう であり,Aは1段目, Bは2段目, Cは3段目, Dは4段目にそれぞ れ横に1か所だけ線を書き加えた。その結果,当たりとなったのはDO であった。アイのことがわかっているとき,正しいものは次のうち どれか。 アDは,横の線を書き加えなくても当たりだった。 イCは,Aが横に線を書き加えた位置の真下に横の線を書き加え れば当たっていた。 AはCよりも左側の位置に到達した。 A 1段目 A 2段目B 13段目 C 14段目 市役 3X にな 3にボ の 数学 物理 5/18 1 2Bが横に移動したのは2回だった。 3CはBよりも右側の位置に到達した。 4DはBよりも右側に横の線を書き加えた。 5Aが横に移動したのは3回だった。 当たり 解説 Dは横の線を書き加えなくても当たりだったのだから, Dは4段目の最も左側に横の線を書き 加えたことになる。そして, Dが当たるためには,Dは (1) 横に1回も移動しない (2) 左 右に1回ずつ移動する, (3) 左右に2回ずつ移動する、のいずれかでなければならないが,D が書き加えた線が最も左側であることから, 左右に2回ずつ移動して当たりとなることはな い。そうすると,Dが書き加えた線が最も左側で,Dが当たりとなるのは10通りあることにな る。 このうち、条件を満たすのは下図の場合だけであり,この1通りに確定する。このとき, 4人の到達位置は左からC, B, D, A (スタート時の位置関係と同じ)となる。 CBDA 生物 地学 文章理解 判断推理 よって、正答は2である。 O C (M) 1-Exa Jos 正答 2

回答募集中 回答数: 0
1/7