数学 大学生・専門学校生・社会人 24日前 写真二枚目のように方針を立ててとこうと考えたのですが、やり方が全然分からなかったので教えて欲しいです A2. 以下の領域に対して, 単調増大列を一つ作れ. 1.D=R2. 2.E={(x,y) ∈R2 | x>0,y > 0}. 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 25日前 式自体は合ってるとは思いますが、どう積分するのか分からない状態です。 出来れば1度、解いて見して欲しいです。 変数変換を使わない場合で計算して欲しいです! お願いします🙇♂️ A1. 1日(ズー)dedy [] (x²+ y²) dady, D = {(217) | 2²+y=≤ 1, x20, 120] 1. 変数変換を用いずに解け。 D ポーズ 国 Rosink exce 11-012 - Cosλ 102 2 (smx+y) g I [th (x²+8) Ly dx 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 27日前 解き方教えて欲しいです A1. 11日(ズ+ye)dedy D={(x)x+ysl ( 1. 変数変換を用いずに解け。 ズーゾー B 特ーズ 0x=1 osysハーズ x= sink Exch SF (x² + y²) Ly dx 6 22 Cosz (sink + y²) Ly 0 = 近畿大学数学教室 x2020 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 約1ヶ月前 この問題について教えて欲しいです。 Sary (7)√√(-5)を根号を使わずに表すと、 となる。さ 標準 についての方程式で-2x+10 の際は、 である 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 2ヶ月前 写真の(3)の増減表のプラスマイナスの部分がわからないです。微分、2階部分してそれが0になると仮定してx=何になるかはそれぞれわかりました。なぜプラスが入っているのかマイナスが入っているかがわからないです。 わかる方教えていただけるとめちゃめちゃうれしいです🙇🏻♀️՞よ... 続きを読む [1B-05] x を実数として, 関数 f(x) を f(x) =x'ex と定義する。 ただし, a は 負の定数である。 (1) f(x) 導関数 f'(x), 第2次導関数 f'(x) を求めよ。 (2)x→ +∞ のとき, f(x) の極限 lim f(x) を求めよ。 x → +∞ (3) f(x)の増減, 極値, グラフの凹凸, 変曲点を調べ, 増減表を書き, y=f(x) の概形を描け。 b <東北大学工学部〉 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 2ヶ月前 (2)の問題なのですが、3枚目の写真にも下線部を引いたように、『項目C=項目A÷面積』なので、『面積=項目A÷項目C』となる理由を教えてほしいです。 練習 4 下表は、P~Wの8つの州から構成されているX国の自動車保 状況をまとめたものである。 項目 C 面積1km² 項目 A 台数(台) 項目 B 人口 1000 人 あたりの台数 あたりの台数 251.4 P 1.26 198.7 0108 21.1 Q 336.2 3.21 104.6 0.1 38.6 R 459.7 3 153.0 0.14 68.6 S 512.4 2.15 237.7 08 01 41.0 T 365.4 1.58 230.7 016 58.9 U 1025.4 2,55 401.3 0.06 64.1 V 211.7 0.89 235.5 0,11 24.9 W 647.7 1.89 343.6 0.11 75.3 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 2ヶ月前 ②の問題なのですが、考えられる組み合わせとして『xw□v□』または『□xwv□』となる理由が分かりません。vは、先月の順位が4位だっただけであって、今月の順位ではないと思うのですが、どうしてvが4位と両方の組み合わせでは固定されているのか教えてください。 問07 リピート チェック 別冊 006 査 推論② 順番を推理する VW、X、Y、Zの5店舗を、毎月売上高の高い順に順位付けしている。 先 月と今月の順位について、 次のことがわかっている。 I) Vは先月より3つ順位が下がった Ⅱ)W の順位は、 先月も今月も Xより1つ下だった Ⅱ) 先月のZの順位は4位だった NV) 先月、 今月とも、 売上高が他の店舗と同じ店舗はない VOI〜IVの情報から判断できる先月のYの順位として、考えられるものはどれ か。 次のA~Jの中から1つ選びなさい。 OA 1 位だけ OB 2位だけ OC 3位だけ OD 5位だけ ○E 1位か2位 ○F 1 位か3位 OG 1位か 5位 OH 2位か3位 ○12位か 5位 OJ 3位か 5位 テストセン ②I ~IVの情報に加えて、次のことがわかった。 V) 今月のYの順位は、Xより下だった I~Vの情報から判断できる今月のYの順位として、考えられるものはど れか。 次のA~Jの中から1つ選びなさい。 OA 2位だけ OB 3位だけ ○C 4位だけ ○D 5位だけ ○E 2位か3位 OF 2位か4位 OG 2位か5位 OH 3位か4位 ○1 3位か5位 OJ 4位か5位 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 2ヶ月前 なんでf^n(a)を2Kと置くのですか?あと全体的にどんな操作をしてるかわかりません。 第2章 定理2.25 f(x) をェ a を含む開区間で定義された関数とし、 = f(x) f'(a) =f" (a) = = f (a) = 0, ƒ (a) が成り立つとする. (1)nが偶数のとき =0 (ii) f (a) < 0 ならばf(x) は x = a において極大値をとる (i) fm (a) > 0 ならば f(x) は x = a において極小値をとる、 (2)nが奇数のときf(a) は f(x) の極値ではない。 証明 (1) のみ示す. テイラーの定理 (2.17) によって (a + 0 (x − a)) (x − a)". f(土)-f(a)=1/21f(a+ 1 n! となる日 (0<日< 1) が存在する. (2.35) nが偶数でf* (a) > 0 とする. fm (a) = 2K とおくとき, f (x)は連続 関数だから, (a-r,a +r) においてf(" (xc) >K となる正数が存在する (2.35) により f(x)-f(a) = n! 1f(m) (a+o(x-a))(x-a)" ≧ K n! (x − a)" ≥0 となる.ここで等号が成り立つのはx=αのときだけだから, f(x)は x = a において極小値をとる. fm (a) < 0 のときも同様に示せる. 例題 2.7 f(x) = x' (e-1) が,r か調べ上 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 3ヶ月前 コーシーの積分定理Iを使った問題です。 (3)の詳しい途中式を教えて頂きたいです。 答えは-π(e-(1/e))です。 よろしくお願いします。 コーシーの積分表示Ⅰ (定理 3.4) を用いて, 次の積分を求めよ. 12-21=1 (1) (3) |z-i|=1 Z 2 -2 - dz sin z dz z-i (2) J. ez dz 2- - πi |z-πi|=1 (4) J. 2 dz 22+1 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 3ヶ月前 (10)と(11)を教えてください🙇♀️ れるとき, 線分AM を2:3に外分する点をGとする。 このときGの座標は (10) である。 (10)3点A(x,y), B(x2,y2), C(x3,y3) を頂点とする △ABCにおいて,辺BCの中点をM, (11)0≦0<2のとき、不等式√3tan0-10 を解くと 11 と である。 13 である。 解決済み 回答数: 1