学年

教科

質問の種類

数学 大学生・専門学校生・社会人

複素数の問題です。 全て解いてほしいです。 特に問題4の解説をよろしくお願いします。

問 ■複素平面と極形式 題 複素数zは:=Rez+ i Imz と書くことができ、実部 Re z をx座標、虚部 Im:をy座標に見立てることで、 ガ ウ こを2次元平面上の1点として捉えることができる。この平面を複素(数)平面ないしGauss 平面と呼ぶ。 一方、ある複素数zを、二つの実数r,e(ただしr>0に制限す る)を用いて Im ミ=ree という形で表わしたものを:の極形式表示と呼ぶ。e の逆数は -1 Im:=rin 1 で定義する。 er Imz 問[]()r= |, tan @ = が成り立つことをそれぞれ示せ。 Rez (i) 逆数の定義に基づいて (e")= e-t0 であることを示せ。 Re Rez=r このようにこの絶対値であるrは複素平面における原点(0+ 0i) から、までの距離を表わし、0は原点とこを結ぶ線分が実軸となす 角を表わす。はarg z とも書き、偏角 (argument)(物理や工学で はしばしば位相(phase))と呼ぶ。原点の周りを一周しても同じ点 に戻ってくることから、0には 2x ラジアン= 360度の整数倍の不 定性がある。また、0+0iの偏角は定義されない。 図1 複素平面。 偏角と加法定理 絶対値が1の二つの複素数 Im 21= COs # +isin @, 2= cos #,+i sin @。 を考える。ここで0,,02 は実数とする。 問 [2]() 積22 を計算し、三角関数の加法定理とオイラーの公 式を用いて極形式表示に直せ。また、同様にして商z/zz = zi の極形式表示も求めよ。(i) 21,22の複素平面における表示を図2 とする。このとき、積」みと商z/を複素平面に図示せよ。 0.5 Re -10 -0.5 0.5 21= e,22= e であったから、小間 (i) のとくに積の方の結 果から、次の基本的な指数法則が成り立つことが理解できる: 基本的な指数法則 -0.5 実数,に対してelh el = e(h+h)が成り立つ。 図2 と2の複素平面における表示。 また、小間(i) の結果から、22= e' hを掛けることで」から偏 角がだけ反時計回り方向に回り(角度が+)、2で割ることで 2」から偏角はだけ時計回り方向に回る(-)ことが納得できる。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

 リヤプノフ関数を用いた微分方程式系の安定性解析について勉強をしています。 写真の問題のうち、問23.1の(1)及び問23.2の(3)の解き方が分からないので教えて頂けますと幸いです。原点が中心、半径がルート3の円が不変集合になる理由も併せてお願い頂けるとありがたいです。よ... 続きを読む

23. リヤプノフ関数と安定性* 108 間 23.2 微分方程式系 dy =ーC dt (12) da =リー(=/3-2), (μ は負定数) dt について,次の間いに答えよ。 (1) V(r,g) = (z° +y°)/2 とする. このとき V12) (z,4) を求めよ。 (Ans. -μ(z°/3 -1)a?) (2) (12) の平衡点 (0,0) は安定であることを示せ。 (3) [研究] 点 (o,Yo) が (2o)? + (yo)? <3 を満たすとする. このとき, (zo,10) を通る解はt→8とすると (0,0) に収束することを示せ。 (ヒント. E={(0,9) : -0 <y < 8} であることに注意し, LaSalle の不変原理 と呼ばれる結果(下記参照) を適用する.) 【参考) RT 内の集合 Mは, 任意の co E Mに対し, zoを通る (2) の解が常に M に留まるな らば (2) に対する不変集合と呼ばれる。 LaSalle の不変原理 V(z) (zE S) は (2) のリヤプノフ関数とする. このとき, S 内に留まる(2) の有界解は, t→ o とするとき E:={ueS:Vg)(z) =D 0} に含まれ る(2) の最大不変集合に近づく

未解決 回答数: 1