学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大学共通テスト問題を教えてください

者紹介 東大入試問題研究会 心に札幌・仙台・大阪・ テネット・オンデマン FIBC を深く づか 小説 と自己とスタイルと [] 発講座 (新装版)』「生 「生きる漢字・語彙 (駿台文庫) 「大学芸 ター対応 生きる小 雲社)ほか僅か。 問1 文章の内容について述べている次の文中の二つの空欄に当てはまる語句を、文章中からそれぞれ六字以上十字以内 で抜き出して記せ。 の二つの原因が、 自動運転の実現を後押ししている。 次は問1の下書き欄。 解答は必ず解答用紙に書くこと。) P に当てはまる語または語の一部を答えよ。 a 問2 図表の内容について説明している次の文の空欄 自動運転は自動化の程度や技術水準によりa つの段階に分類されており、現在でもすでに としての実用化が行われている。また完全自動運転は、 の企業の参入もあって研究が積極化するだろう も山積している。 が、一方では安全性や社会倫理の観点からの 問3 【グラフI】は都内における10年間の交通事故のデータを示したものであるが、これについて述べた次の文ア~オ について、 【グラフⅠ】を適切に読み取れているものには○、読み取れていないものには×で答えよ。 交通事故の総件数は年々減少している。 高齢運転者が関与する事故の総件数は最近3年間では減少している。 ウ年齢が上がるにつれて交通事故を引き起こしやすくなるといえる。 工高齢運転者は年々交通事故を引き起こしやすくなってきている。 オ 交通事故の件数に占める高齢運転者の関与の割合は年々高まっている。 P b

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

小論文の添削お願いします

No. Date 近年グローバル化や少子高齢化が進んでいる。また世界には ●障害を持った体を十分に動かせない方もいる。そのためすべて の人に同じ対応をしていても十分に満足できない人もいる。そ のような状態になることで普段とは違う状況にストレスを感じ てしまうだろう。そのため安心して生活するためには不自由な く生活できる環境が必要なのではないだろうか。 近年ではグローバル化が進んでおり、日本に住む外国人も増 えてきた。日本語を日常的に使える程話せたり、読み書きを出 来る方もいるがそうでない方も多くいる。私が京都に修学旅行 に行った時に観光をしている外国に英語でインタビューをする という課題があったのだが、私の知らない言いまわしなどがいく つかあった。つまり言葉が通じないというだけで十分にストレ スにつながってしまうのではないだろうか。次いで少子高齢化 ○についても考えていこうと思う。少子高齢化も近年では問題視 されていることだが、一般的に高齢者は若ものに比べ体が弱く ○人で出来る事も少なくなってしまうだろう。私のおばあちゃん C は元気な方ではあるが牛乳や米など重いものを買う時は私に手 伝いをお願いしている。また、障害を持った方なども一人で出 ○来ない事などがあるだろう。そこでそのような人達でも生活し やすい環境が必要だと考える。 すべての方が不自由なく生活するために私は二つの方法を考 ○えた。まず一つ目はバリアフリーな施設である。外国の方は白 本人に比べ体の大きい人が多い。そのため天井を少し高くした り、風呂を広くすると良いだろう。また、高齢者や車イスを使 う方などは段差があると大変なので階段ではなくスロープを作っ たり、車イスのまま移動が出来る空間造りが必要だと思う。二つ ●目はユニバーサイデザインを使用する事である。日本語の文字 O を読む事が出来ない外国人や小さなお子様でも分かりやすい フクトグラムなどを使用することで不慣れな環境でも生活しやす ○いだろう。 以上の点から避難した人々が不安なく安全に生活するために は一人一人に合った不自由がなく生活できる環境が必要である。 KOKUYO LOOSE-LEAF ノ-836BT 6mm ruled x36 lines

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の知識ある方、以下にある式の導出方法分かりやすく教えていただきたいです。 分かるところだけでも教えてくれると嬉しいです😭 ちなみにこのサイトは、 統計学入門 http://www.snap-tck.com/room04/c01/stat/stat0001.html こ... 続きを読む

19:56 1 allệ (注3) 相関分析と同様に回帰分析の場合も信頼区間を求めることができま す。まずyの推測値の信頼区間は次のようになります。 この信頼区間は母集 団のy推測値の100(1-α) % が含まれる範囲を表し、信頼限界と呼ぶことが多 いようです。 y=a+b=(my-bmx)+bx = my+b(z-mz)→(j-my)=b(x-mz) VR VR V(j-my) = V(j)+V(my)-2C(j,my) = V(g) + -2 = V(y) - VR =V n n n =V(b(z-mx))=(x-m²) 2V(b)=(x-m²) 2VR S エエ (x - ₂)² 2V (6) - Vx{1+ (².²} =VR n S x=X0の時のy推測値の100(1-α)% 信頼限界: U Dol=a+bro ±t(n-2,a) VR -2,0)√| V₁ { 1/2 + ( 2 = m₂) ² } n S エ mx:xの標本平均 Sxx:xの平方和 VR : 残差分散 VR C(jj,my) = y推定値とmyの共分散 t(n-2, α): 自由度(n-2)のt n 分布における100α%点 この100(1-α)% 信頼限界において、x=mxの時の値を計算すると次のように なります。 VR ŷOL =a+bm±t(n-2,0) VR・ -2,0) √/ VR { 1 1 1 + (m₂ - m₂)² S エエ 2²}. =my±t(n-2,a)V n n これは値と残差分散が少し異なるだけで、 平均値の信頼限界(信頼区間) とほ ぼ同じ式であることがわかると思います。 つまり回帰直線は平均値を2次元 に拡張したものに相当し、 y推測値の信頼限界は平均値の信頼限界を2次元に 拡張したものに相当することになります。 次にyの信頼限界を求めてみましょう。 もしaとbに誤差がない、つまりy推 測値に誤差がないとすると次のようになります。 これが許容限界になりま す。 V(g) = V(g+c)=V(e) =VR x=x0の時のyの100(1-α) % 許容限界: gol =a+bro ±t(n-2,a)VVR you x=mxの時: gol = my±t(n-2,a) VVR しかし実際にはaとbには誤差があるので次のようになります。 これが棄却 限界です。 回帰分析の場合は棄却限界のことを予測限界 (prediction limit)と 呼びます。 (x-²)) S エ n n SII V(g+c)=V(g)+V(c) +2C(j,c)=VR /R { 1 + (*² =− m ₂) ² } + V₁ + 0 = VR { 1 + 1 2 + ( x − m ₂ )² ]} x=X0の時のyの100(1-α) % 予測限界: 1 (x-m₂)² yoz=a+bro ±t(n-2.0)/VR =t(n-2,α) √ -2,0) √/V₁ { 1 + 1 + n S エ U x=mxの時: yol = my ±t(n-2,a) 2, a) √/ VR (1+1) VR (1+ 安全ではありません - snap-tck.com

回答募集中 回答数: 0