学年

教科

質問の種類

数学 大学生・専門学校生・社会人

幾何学の問題です。 (1)~順に解いていくと思うのですが、(1)の単体分割の図示の仕方から分かりません。そのため、後半もどのように解いていけばいいか分かりません。計算問題は自分で頑張りますので、図示、説明の方のご説明よろしくお願い致します。

2. トーラス T2 の位相幾何学的な性質をホモロジー群を用いて調べる. まず, トーラス T2 を1つ穴 あきトーラスŠと円板 ID2にカットする. Š := このとき, カットラインをC: SOID2と表す。 以下の問に答えよ. (1) D2の単体分割Pを1つ図示せよ. (2) |Kp| = P を満たす単体的複体 Kp を求めよ。 ただし,単体的複体であることの確認は「単 体的複体」の定義を述べることで省略できるものとする. (3) 単体的複体 Kp の1次元ホモロジー群H1 (Kp) を定義に沿って計算せよ. (4) H1(S) を,同相変形とレトラクション, ホモロジー群の図形的意味を用いて求めよ.ただ し, 同相変形とレトラクションがわかるように, 「パラパラ漫画」の要領で, コマ送りで図 を描くこと.また, 必要に応じて, 図に説明を付けよ.尚, レトラクションについては, S の単体分割は十分細かく取ったと仮定し, “なめらかに”変形してよいものとする. (5) カットラインCはH1 (S) 上の 1-cycle として0であることを (4) の図式を用いて説明せよ. (6) 上記の問と Mayer-Vietoris の定理を用いて, トーラスT2の1次元ホモロジー群H1 (T2) を 計算せよ。 ただし、途中の計算式,並びに Mayer-Vietoris の定理をどのように適用したか を省略せずに書くこと. (7) トーラス T2の0次元ホモロジー群Ho (T2) を, ホモロジー群の図形的意味を用いて 求めよ. (8) トーラスT2の2次元ホモロジー群H2 (T2) を, ホモロジー群の図形的意味を用いて求めよ. (9) X(T2)=2-2g (T2)が成り立つことを結論付けよ. (10) 2次元球面S2 := {( ,y,z)∈R3|z2+y^+22=1}とトーラス T2は同相ではない.その 理由を、上記の問いを含む幾何学6で学んだ内容を用いて詳しく論じよ.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

教えてほしいです、、🥲 中等教科教育法数学①です、! 回答の流れも一緒に教えてくださると、本当にすごく助かります、、💦 ②もあげるので、そちらもお時間あれば答えてくださると嬉しいです😖

中等教科教育法数学 ⅡI 第1設題 2 3 14 15 6 18 次の無理数の分母を有理化せよ. 1 (1) (2) 1+√5 +√7 1 2-35 (3) 1 1+√3+2√9 V6v3 + 10 - V6√3-10 の値を簡単にせよ. 次の問いに答えよ. (1) 多項式 + 34 + 53 + 522 +3 + 1 を実数係数の範囲で因数分解せよ. (2) 多項式 100 + 275 + 32:50 + 4225 + 5 を 2² + +1 で割った余りを求めよ. 実数, y, ²x2+12+22=02, (aは正の定数) を満たして変化するとき, 3 + y + 2-3xyzの 値の最大値、最小値をそれぞれ求めよ. 次の漸化式で定まる数列 {an}の一般項を求めよ : an+2=23/an+1 a² Qo=1, a1=2. f(x)=2x3 +32-2 とする. このとき, 次の合成関数の値は, 10 進表記の下で,1000個以上の9を含 むことを示せ: f(f(...ƒ(9))). 10個 △ABC において, AB = 5, BC = 7, CA = 8 とする. 次の問いに答えよ. (1) 角のうち1つであることを示せ . (2) △ABC の各頂点を各辺上にもつ正三角形DEF を考える.但し, 頂点 A, B, C はそれぞれ辺 EF, DF, DE 上にあるとする. このとき, 辺 EF の長さの最大値を求めよ. f(x)=x-10x2+kx とする.但し, k は正の実数とする. (1) 方程式f(z)=0が3つの実数解をもち, それらの解が互いに1以上離れているためのんの条件を 求めよ. (2) (1) の条件を満たすんのうちで, 曲線y=f(x) とz軸とによって囲まれる図形の面積を最小にす るものを求めよ. 19 100円 105円の硬貨合計 4個を用いて B 円払うとする. ある A, B について, 相異なる支払い 方法が2通りあるようなAの最小値を求めよ. |10| 次の問いに答えよ. (1) 1からnまでのn個の自然数のなかから, 相異なる任意の2数をとってつくる, あらゆる積の和 を求めよ. (2) 1からnまでのn個の自然数のなかから, 相異なる任意の3数をとってつくる, あらゆる積の和 が次で与えられることを示せ: 1372(n+1)^(n-1)(n-2).

未解決 回答数: 1
1/10