学年

教科

質問の種類

数学 大学生・専門学校生・社会人

波線部分が理解できません😿なぜそのように言い換えられるかが不明ですよろしくお願いします🙇

EN論法で, 数列の極限を攻略しよう! 数列と関数の極限 818 一般項an が与えられたとき,その極限liman の問題は高校でも既に勉 強しているね。でも,数列{an}が極限値 αをとることを示す厳密な証明 法として,大学の数学では,e-N論法をマスターする必要があるんだよ。 イプシロン・エヌろんぼう”と読む。 まず,この “e-N論法” を下に示す。 E-N論法 正の数をどんなに小さくしても,ある自然数 N が存在して, nがn≧Nならば,|an-a|< となるとき, liman=α となる。 n→∞ これだけでは,なんのことかわからないって? 当然だね。 ここは,大学 の数学を勉強する上で, みんなが最初にひっかかる第1の関門だから丁寧 に話すよ。 この意味は,正の実数を小さな値, たとえば, c = 0.001にとったとし ても,ある自然数Nが存在して, 数列 41, 2,., an-1, ax, ax+1, … のうち n≧Nのもの, すなわち ax, ax+1, に対して, α との差αが、 (N,N+1,... ε=0.001より小さく押さえられる, と言っているんだね。 ここで,正の実数は連続性と稠密 (ちゅうみつ)性をもつので,こ を限りなく0に近づけていくことができる。 それでもあるNが存在し n≧N をみたす an について, lan -α < が成り立つといっているわけ ら, n→∞のとき, α はαに限りなく近づいてlim=α と言える だね。 納得いった? 818

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
1/11