学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数3の微積分の問題です。 正解の記号を教えて頂きたいです( т т )

H-A 1. (合成関数の微分) 1. 関数 f(x,y)=x,x>0についてA 1. yx, 2. yx, 3. (logy)x³, 4. (log.x)x³, 5. x³, 6. (logy)aly, を求めよ。 とB=C 2. 関数 f(x,y)=x,x>0x=ty=1の合成関数のを求めよ。 1.12.flogt,3.1(1+logr), 4.r-log1,5.8-1 (1+logr), 6. 存在しない 3.g(r)=f(0<r<w) の極値を取る点を求めよ。 (1.1,2.c, 3.1/e, 4.2.5.極値なし) 4. 話は変わりますが lim の値は? 1.e, 2.1.3.1/e, 4.0, 5.存在しない 1+++0 2.合成関数の2階偏導関数) 関数 z=f(r) のr=√²+² との合成関数z= f(vx²+y²) の導関数について答えよ。 1. £.$****. (1. f(r), 2. f'x/r, 3. fy/r, 4. f/r, 5. f'x/2,6. f'y/2) 2. (3)² + (3)² =? (¹. (F², 2. (f)³²/r, 3. (f)²/7², 4. (f)²r, 5. #v³) 3. +=? (1.f″+ƒ', 2. f" + f/r, 3. f" + (x+y)/r. 4. f" + f²/7²,5. #v>) H-A3. (陰関数の微分1) 次の関係式で定まる陰関数の導関数を求めよ. 1. f(x,y)=a²x²+b²y²=0, (A₁-B: - CD - ycossin(オーナ) 2. ysinx=cos(x-y) (1.-200 sint-sin(x-g) . H-A4. (大・小2) 次の関数の極大 極小をしらべよ。 f(x,y)=2019-2²-xy-y²+2x-3y 1.x=y=0 となる点は、(1.(1,2),2.(1,-1), 3. (1,-2), 4. (1,1), 5. 絶対にない) 2. fufy-Con=Bである。 (1正の数, 2.負の数 3.0) 3.点AではCをとる. (1.極小値,2極大値 3. 不明な極値) 4. 極値の値は? (1.2021,2.2022, 3.20234.2024) 2.-s-sin(x-7) 3. ycosx-sin(x) 4.ない) sinx+sin(x-y) sin.x-sin (x-y)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

加法定理です! 基本165の問題が分からないことがあります。 αは鋭角であるから、と答えにあるのですが、鋭角と鈍角はどうやって見分けるのでしょうか?また、Sinα=‪√‬1-cos2乗αの式はどの公式をつかっているのでしょうか? お願いしますm(_ _)m

27 加法定理 ① 正弦余弦の加法定理 ① sin (a+β)=sinacosβ+cosasin β ② sin (a-β)=sinacosβ-cos asin β 3 cos (a+8)=cos a cos B-sinasinß ④ cos (a-β)=cosacosβ+sinasin β 正接の加法定理 tana + tan B tan(a+8)=7 1-tanatan B 2直線のなす鋭角 x軸の正の部分から2直線y=mix ...... 図のようにα, βとすると 2直線①、②のなす角0 (0<0<^) [1] 0<α-B <1のとき 0=a-B 13 sin 1x, cos YA a (2) sing= 0 B 13 127, 4 ② tan (α-β)= π, ・①,y=mzx..... tang=m, tanβ=mz = 基本 163 加法定理を用いて, sin 165°, cos 165°tan 165°の値を求めよ。 13 π 3 19 基本 164 1/12=1/7/8/1/1 + 3 5 -π+- 3 12' 4 6 ミル tana-tan 1+tan atan B は次のようになる。 [2] <a-Bのとき 0=-(α-B) YA A 19 tan 12 の値を求めよ。 ITEM a B まで測った角を x であることを用いて, 基本 165αが鋭角, βが鈍角であるとき、次の値を求めよ。 (1) cos a=- sinβ=1のとき sin(a+B), cos(a+B) 1 3' 12 =1/13, cosB=- β= のとき sin(α-β), cos(α-B) 13 (3) tana=5, tanß=-3 M¿‡ tan(a+ß), tan (α-ß)

解決済み 回答数: 2