学年

教科

質問の種類

数学 大学生・専門学校生・社会人

数Iの一次不等式の問題です 果物の個数が(4x+26)個になるのはわかるけど、 9(x -1)と9xのところが何故そうなるのかがわかりません

問題33 1次不等式の文章題への応用 何人かの子どもに果物を配る。 1人に4個ずつ配ると26個余るが, 1人に 9個ずつ配っていくと最後の子どもは果物はもらえるが他の子どもより少 なくなる。 子どもの人数と果物の個数を求めよ。 思考プロセス 未知のものを文字でおく 子どもの人数、果物の個数のどちらかをxとおく。 子どもの人数をxとおく 果物の個数をxとおく → 子どもの人数は x-26 4 子どもの人数をxとおいた方が, 簡潔に表すことができる。 Action » 文章題は、 未知のものをxとおいてその変域に注意せよ 解 子どもの人数をx人とおくと, 果物の個数は ( 4x+26) 個 である。 xは自然数である。 これより すなわち ①を解くと ②を解くと 9(x-1)<4x + 26 <9x_ J9(x-1)<4x+26 14x+26 <9x x < 7 x> 26 5 26 5 < x <7 3 果物の個数は 4x+26 4 ③ ④ より この不等式を満たす自然数xを求めると このとき, 果物の個数は 4x+26 = 4.6 +26 = 50 子ども6人, 果物 50個 したがって Point... 文章題の不等式による解法の手順 ① 未知のものをxとおく。 (2) xの式で表せるものを考える。 大小関係を不等式で表す。 (4) (連立) 不等式を解く。 (5) ④ の範囲の中から適するxの値を求める と1人に9個ずつ配ると最 後の子どもも果物をもら えるから x=6 9(x-1)<4x +26 最後の子どもは他の子ど もより少ないから 4x+26<9x よって 9x-8 ≦4x+ 26 ≦9x-1 としてもよい。 26 0 = 5.2 であるから, 5 5.2 < x < 7 を満たす自然 数xは6 子どもの人数をx人とおく 果物の個数は (4x+26) 個 9(x-1)<4x+ 26 < 9x E

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

線形代数に関する質問です! (2)についてなのですが、直線上の任意の点を、(a1+tb1,a2+tb2)として解くことは可能でしょうか? 直線ということなので、直線のベクトル方程式から、求めようと思ったのですが、うまくいきませんでした。 よろしくお願いします!

例題11-9(平面上の1次変換) (³3) 4 行列 | で表される平面上の1次変換 (線形変換)をfとする。 (1) y 軸に平行な直線 x =k は, f によって自分自身に移されないことを 示せ。 (2) f によって自分自身に移される直線をすべて求めよ。 [解説] 素直に1次変換で点を移すのが基本である。 平面上の1次変換 ( 線形 変換)によって,線形写像の図形的イメージをつかもう。 [解答](1)直線x=k上の任意の点(k, t) のfによる像を(x', y' とすると、 よって, x'=3k+t 3k+t (*)-(3 3 ) ( ) = (3x + 4) 4 .4k+3t. 点 (x', y) のx座標が一定ではないので, 直線 x =k は自分自身には移さ れない。 (2) (1)により, 求める直線の方程式をy=ax+b とおける。 この直線上の任意の点 (t, at+b) のfによる像を(x, y とすると x' 3 t 3+α)t b (x)=( ) (²+0) = ((4+30)+1+36) - 2 4 at+b これが再び直線y=ax+b 上の点であるとすると, (4+3a)t+3b=a{(3+a)t+b}+b ∴. (a²-4)t+ab-26=0 これがtの恒等式となるためには, Ja²-4=0 lab-26=0 [(a−2)(a+2)=0 (a−2)b=0 ∴. [a = -2 かつ6=0 ] または [a =2 かつ6は任意] よって、求める直線の方程式は, y=-2x,y=2x+b (bは任意) ・〔答〕

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

五番の問題がわからないです。教えて欲しいです!よろしくお願いします^_^

予想問題 ] ⑤A, B, C3 組の夫婦6人が旅行先でゴルフ大会を開き 勝した。前日,当日,当夜の状況は次の通りである。 あ (ア)優勝者の配偶者は,当夜トランプをして負けた。 (イ)A氏は,前日気分がすぐれずずっと寝ていた。 +0+ (ウ)B氏は,C夫人に当日初めて会った。 3+0+ta (エ)B夫人は,1人の夫人と当夜ずっとおしゃべりをしていた。 (オ)B氏は,前日テニスをして優勝者に勝った。 ヨナ (カ)A夫妻は当夜トランプに参加し, A氏が勝った。 Q+A 4530030 上の状況から判断して、優勝者は誰か。 031-0+日 -A)S ,U10+0+0+0+0 (3) B*X+0+0+8+A ** (1) A氏 (4) C氏 (2) A夫人 (5) C夫人 口 ⑥ 全く同じ型の4戸ずつのアパートが図のように3棟並んで建ってい 8-0.58TAME=A る。ここに住んでいるA~Dの4人はおのおの次のように発言して いる。 A「私の家は棟のはしではなく,すぐ 南側の棟にBさんの家があります」 B「私の家は棟のはしで、1軒おいて 東側にCさんの家があります」 C 「Aさんの家とDさんの家とを結ん だ直線上に、 私の家があります」 D 「私の家の1軒おいて真北にEさんの家があります」 1 (1) Aの家は2である。 (2) Bの家は8である。 (3) Bの家は9である。 (4) D 5 以上のことから確実にいえるのは,次のうちどれか。 2 北 6 7 8 9 10 11 12 3 4 3組の夫婦6人を A, a, B, b, C,cで表す。 5 Point A夫妻をA, a, B夫妻をB, b, C夫妻をC,cで表す。 ただし 小 文字は夫人を示す。また, 優勝者をW, その配偶者をwで表す。 (オ)より, BWとなる。 (ア) (カ)より, A≠wとなり, a≠Wとなる。 (イ)と (ウ)と (ア)と(エ)より、 「1人の夫人」はc となり, c≠w,CW となる。 -10 (40) 以上より,残るのはB夫人だけとなり, B夫人が優勝者とわかる。 B SA AI ⑥ Point 確定した位置関係をもとに他の条件を加える。 Bの発言から、BとCの位置関係は次のようになる。 B A≠Wとなる。 よって, a≠w。 (オ)より, c≠Wとなり, C≠wとなる。 (オ)より, A 解説と解答・ C これに,A,C,Dの発言を加えると,4者の位置関係は次のよう になる。 北 C E (3) D

回答募集中 回答数: 0