学年

教科

質問の種類

数学 大学生・専門学校生・社会人

投影図の問題です。図4の重なる辺を調べて面を移動している所が、何をしているのか全く分かりません。ここをもう少し分かりやすく示して頂くことはできるでしょうか…?

5. 3. 1. A Challenge 立方体の展開図の問題 図Iのような一つの面で接している正六面体A, Bがある。 A,Bには模様 から見た図である。 また、 AとBの接する面の模様は一致しており、底面には があり、図Ⅱは、 ①の矢印の方向から見た図であり、図Ⅲは、②の矢印の方向 模様がない。このとき、A,Bの展開図の組合せとして最も妥当なのはどれか。 (1) A A 図 I A H B A Firmy B B 図 Ⅱ B B 2. 4. A A B 図Ⅱ 国家総合職 2016 A B AとBの接している面以外の10面を、図1のよ うに、ア~コとします。 ウとクは底面ですから、 模 様が描かれていませんね。 図 1 オ ア 図2 イ A ↑ エ キ A 力 B 1 ク ア コー イ ケ B Aのほうだけちょっと 色を付けとくね! さらに、図1の10面について、 AとBそれぞれの展開図を描くと、 図2の ようになります。 たしかに 力 ア B 1 ク キ ク I A t " これより、 まずAについて、アとウは向かい合う面ですが、肢2,3は、 図3のように、向かい合う面の位置関係 (基本事項①) になっていませんので、 ここで消去できます。 また、肢5については、エに描かれた線の向きが図2と異なることが、 アの 線とのつながりからわかり、同様に消去できます。 こうじゃないと いけないんだよね多分

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0