学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)のXとYの求め方が分からないです。教えて頂きたいです!! 解答としてはX=√5 Y=2√5 です。

共通テスト 対策問 題 10を原点とする座標平面上において, 円ポ+パ=25 をCとし, 直線エ+2y=kを1とする。 ただし,kを定数とする。次の間いに答えよ。 (1) 円Cと直線1が共有点をもっための必要十分条件は, 次の条件か, qのいずれかが成り立つっことである。 +パ=25 p:連立方程式 が実数解をもつ e+2y=k 9:原点0と直線1の距離がア ]以下である p, qのいずれかの条件を用いることにより, 円Cと直線1が共有点をもつようなんの値の範囲は, -[イ]ウ]Sk<イ]ウ と求められる。 (2) tを実数とし, Cと1の式からつくられる方程式(+ザー25) +t(x+2y-k)=0 において, k=10 のとき,(2°+パー25)++(x+2y-10)=0 … A). k=20 のとき,(2°+ぴ-25) +t(x+2y-20)=0 (B) である。 これらの方程式の表す図形について考える。 まず,方程式(z+パ-25) +t(x+2yーk)=0 を変形すると オ (++ ++が-25+か+ エ カ となる。 右辺の正負に注目すると, (A)の方程式が表す座標平面上の図形は, キ (B)の方程式が表す座標平面上の図形は, ク キ」 クには正しいものを次の①~①のうちから一つずつ選べ。 0 tの値にかかわらず, 円である。 0 tの値にかかわらず, 存在しない。 ② tの値に応じて, 円であるときと, 1点であるときの2種類がある。 3 その値に応じて, 円であるときと, 図形が存在しないときの2種類がある。 ④ tの値に応じて, 円であるとき, 1点であるとき, 図形が存在しないときの3種類がある。 (3) 円C上を動く点Pがある。 点Pの座標を(X, Y)とするとき, 次の(i), (i)のX, Yの式について調べよう。 iX+2Yのとり得る値の最大値を求める。 (1)の結果を用いると, X+2Yの最大値は イ ウ」であり, このときのX, Yの値は, X=|ケ], Y=コ]| サ である。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

m=のときになぜ1を足すのかがわかりません。真ん中らへんのやつです。よろしくおねがいします

ヒント!リこれは, 分母2',2°, 2°, …によって, 群数列に分けて考えるとうまく 群数 難易度 CHECK 1 CHECK2 CHECK3 元気カアップ問題 127 3 と与えられている。 1 7 16'16 5 3 8'8 13 8 11 数列{a,}が、 8 2) 4 | チ 4 m のとき, m の値を求めよ。また Sm3D 2 a, を求めよ。 128 1 n=1 am いくんだね。 ココがポイント 解答&解説 数列{a}を次のように群に分けて考える。(第7群の初項) 1 コam= 128 =方は,第7群 ai a2, a3 a4, as, a6, ay as, am の初項だね。よって, mは 第6群までの各群の項数の 和に1をたしたものだね。 1 1 3 1 3 5 7 1 2|2? 2|| 2 2 2° 2 2 第 2 群 (2項) 第 4 群 (8=2°項) 第 群 (1項) 群 (4=2"項) 群 (2°項) 1 ここで,am= 128 -は, 第7群の初項なので, 最初の数 三 20 (最後の数) m=1+2+2?+…+2*+1=63+1=64 -(答) ←0+2+2"+…+2@は 初項a=1, 公比r=2, P 1(1-29) 第6群までの各群の項数の和 =2°-1=64-1=63 項数n=6(=5-0+1) 1-2 最後の数)(最初の数 次に,第n群の数列の和を T,とおくと, の等比数列の和だね。 1 T,= 2" 2"-1 3 1 {1+3+5+…+(2"-1)} 1+3+5+…+(2"-1)は, 2" 2" 2" 初項1,末項2"-1, 項数2"-1の等差数列の 和より, 2タ-1 項 2 2 1 2".2"-2-2 となる。 (項数 初項 (末項 三 2" 2 (27-1 1+2"-1) m 6 6 2 . Sm=E a,= 2 T, +a64= 2 2" 2+ 128 n=1 n=1 n=1 第6群までの数列の和)(第7群の初項 am=Qs4. n=1 =1 63 1 63×64+1 4033 (答) 2(1-2) _63 2 1-2 ニ 2 128 128 128 a=2", r=2, n=6の 等比数列の和 196

解決済み 回答数: 1