学年

教科

質問の種類

数学 大学生・専門学校生・社会人

これの問2の(3)がどうアプローチすればいいのか分かりません。誰か助けてくれると嬉しいです。よろしくお願いします。

正規分布に従う乱数を 100個出力した数値群を母集団とする。その数値群は以下の表である。 19 1 -5 -2 8 24 -16 25 0 10 5 19 -14 0 4 -16 -16 -7 -6 9 -5 5 17 3 -6 -6 11 2 16 4 -3 16 5 -1 8 -9 2 12 -24 -6 2 -13 0 -3 -6 16 -16 25 8 4 4 2 9 -1 7 2 -1 -10 13 12 11 13 17 -13 3 9 -2 1 -8 -8 -5 -15 -10 14 -4 -4 8 -10 3 13 -1 11 -3 -5 -1 12 -6 -14 4 10 3 -10 0 -1 -12 4 15 -17 -9 18 又、この母集団から標本として任意に 10個の数値を抽出する操作を5回試行した。その結果は以下の表で ある。 試行1回目 試行2回目 試行3回目| 25 試行4回目 試行5回目| 25 8 -16 0 -16 -6 2 5 -9 -6 15 -2 8 24 -5 14 -4 8 -10 15 -17 0 10 9 25 8 9 -1 -2 12 0 -3 2 -13 -3 10 -4 8 -17 -9 -6 2 25 9 12 -8 8 13 18 これらの表に関し以下の問いに答えよ。尚、数値計算結果が非整数の場合は整数で近似せよ。 問1.(記述統計に関して) (1) 母集団の度数分布表及び度数分布図を作成せよ。 (2) 母集団の最頻値を求めよ。 (3) 母集団の中央値を求めよ。 (4) 母集団の平均値を求めよ。 (5) 母集団の四分位範囲を求めよ。 (6) 母集団の分散を求めよ。 (7) 母集団の標準偏差を求めよ。 (8) 母集団に外れ値は存在するか述べよ。又、存在するならば明記せよ。 (9) 数値群の絶対値と度数をそれぞれ変数とする時、相関係数を求めよ。 (10) (9) の結果から数値群の絶対値と度数にはどのような相関があるか言及せよ。 問2.(推測統計に関して) (1) 試行回目の結果として標本平均をX,とした時、各試行に対する標本平均を導出せよ。 (2) 試行;回目の結果として標本分散を V; とした時、各試行に対する標本分散を導出せよ。 (3) 母集団の推定値として有効な標本平均が試行回目の結果である時、iはいくつが妥当であるか 根拠とともに述べよ。 (4)(1) から(3) で導出した推定値を参考にモーメント母関数 Mx(t) を明記せよ。 (5) 試行回数をさらに増やした時、平均値及び分散のの期待値はどうなると期待されるか述べよ。 正規分布 N(μ,o2) のモーメント母関数は Mx(t) は以下の関数で表される。 Mx(t) = exp(ut + 2 このモーメント母関数に関して以下の間に答えよ。 問3.(確率分布の解析に関して) (1) モーメント母関数の原点まわりでの導関数が以下を満たすことを示せ。 Mx) d =L. dt (2) モーメント母関数の原点まわりでの2階導関数が以下を満たすことを示せ。 d? 2 Mx(t) It=0 ミg

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

これの問2問3ってどうやってやればいいですか?

正規分布に従う乱数を 100個出力した数値群を母集団とする。その数値群は以下の表である。 19 1 -5 -2 8 24 -16 25 0 10 5 19 -14 0 4 -16 -16 -7 -6 9 -5 5 17 3 -6 -6 11 2 16 4 -3 16 5 -1 8 -9 2 12 -24 -6 2 -13 0 -3 -6 16 -16 25 8 4 4 2 9 -1 7 2 -1 -10 13 12 11 13 17 -13 3 9 -2 1 -8 -8 -5 -15 -10 14 -4 -4 8 -10 3 13 -1 11 -3 -5 -1 12 -6 -14 4 10 3 -10 0 -1 -12 4 15 -17 -9 18 又、この母集団から標本として任意に 10個の数値を抽出する操作を5回試行した。その結果は以下の表で ある。 試行1回目 試行2回目 試行3回目| 25 試行4回目 試行5回目| 25 8 -16 0 -16 -6 2 5 -9 -6 15 -2 8 24 -5 14 -4 8 -10 15 -17 0 10 9 25 8 9 -1 -2 12 0 -3 2 -13 -3 10 -4 8 -17 -9 -6 2 25 9 12 -8 8 13 18 これらの表に関し以下の問いに答えよ。尚、数値計算結果が非整数の場合は整数で近似せよ。 問1.(記述統計に関して) (1) 母集団の度数分布表及び度数分布図を作成せよ。 (2) 母集団の最頻値を求めよ。 (3) 母集団の中央値を求めよ。 (4) 母集団の平均値を求めよ。 (5) 母集団の四分位範囲を求めよ。 (6) 母集団の分散を求めよ。 (7) 母集団の標準偏差を求めよ。 (8) 母集団に外れ値は存在するか述べよ。又、存在するならば明記せよ。 (9) 数値群の絶対値と度数をそれぞれ変数とする時、相関係数を求めよ。 (10) (9) の結果から数値群の絶対値と度数にはどのような相関があるか言及せよ。 問2.(推測統計に関して) (1) 試行回目の結果として標本平均をX,とした時、各試行に対する標本平均を導出せよ。 (2) 試行;回目の結果として標本分散を V; とした時、各試行に対する標本分散を導出せよ。 (3) 母集団の推定値として有効な標本平均が試行回目の結果である時、iはいくつが妥当であるか 根拠とともに述べよ。 (4)(1) から(3) で導出した推定値を参考にモーメント母関数 Mx(t) を明記せよ。 (5) 試行回数をさらに増やした時、平均値及び分散のの期待値はどうなると期待されるか述べよ。 正規分布 N(μ,o2) のモーメント母関数は Mx(t) は以下の関数で表される。 Mx(t) = exp(ut + 2 このモーメント母関数に関して以下の間に答えよ。 問3.(確率分布の解析に関して) (1) モーメント母関数の原点まわりでの導関数が以下を満たすことを示せ。 Mx) d =L. dt (2) モーメント母関数の原点まわりでの2階導関数が以下を満たすことを示せ。 d? 2 Mx(t) It=0 ミg

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

自由度10のx^2乗分布において、P(0<=X<=U)=0.98を満たすUの値を求めよ という問題があるのですが、答えを教えてほしいなどとおこがましいことは言わないのですが、何かヒントなどがありましたら教えてほしいです。

x?分布パーセント点 * 縦軸:自由度 横軸:確率 0.975 0.950 066°0 0000°0 0.0002 0.0201 0.995 0.050 0.025 0.010 0.005 0.0010 0.0039 3.8415 5.0239 6.6349 7.8794 I 0.0100 0.0506 0.1026 5.9915 7.3778 9.2103 9969'0T 0.0717 0.1148 0.2158 0.3518 7.8147 9.3484 11.3449 12.8382 0.2070 0.2971 0.4844 0.7107 9.4877 11.1433 13.2767 14.8603 0.4117 0.5543 0.8312 1.1455 11.0705 12.8325 15.0863 16.7496 0.6757 0.8721 1.2373 1.6354 12.5916 14.4494 16.8119 18.5476 9 6689 I 2.1673 2.7326 0.9893 1.2390 14.0671 16.0128 18.4753 20.2777 1.3444 1.6465 2.1797 15.5073 17.5345 20.0902 21.9550 8 0999°IZ 23.5894 25.1882 1.7349 2.0879 2.7004 3.3251 16.9190 19.0228 6 3.2470 18.3070 20.4832 23.2093 2.1559 OL 2.6032 2.5582 3.9403 3.0535 3.8157 4.5748 19.6751 21.9200 24.7250 26.7568 12 3.0738 3.5706 4.4038 5.2260 21.0261 23.3367 26.2170 28.2995 13 3.5650 4.1069 5.0088 5.8919 22.3620 24.7356 27.6882 29.8195 14 4.0747 4.6604 5.6287 6.5706 23.6848 26.1189 29.1412 31.3193 6009 5.2293 5.8122 27.4884 30.5779 32.8013 6097L 24.9958 26.2962 15 6.2621 6666 IE 34.2672 35.7185 6.9077 7.9616 28.8454 5.1422 96 5.6972 27 6.2648 6.4078 7.5642 8.6718 27.5871 30.1910 33.4087 18 7.0149 8.2307 9.3905 28.8693 31.5264 34.8053 37.1565 30.1435 38.5823 606I'9E 10.1170 9906'8 10.8508 7.6327 32.8523 61 6.8440 7.4338 020 8.0337 8.2604 9.5908 31.4104 34.1696 37.5662 8966°68 21 8.8972 10.2829 11.5913 32.6706 35.4789 38.9322 41.4011 22 8.6427 9.5425 10.9823 12.3380 33.9244 36.7807 40.2894 42.7957 23 9.2604 10.1957 11.6886 13.0905 35.1725 38.0756 41.6384 44.1813 24 9.8862 10.8564 12.4012 13.8484 36.4150 39.3641 42.9798 45.5585 25 10.5197 11.5240 13.1197 14.6114 37.6525 40.6465 44.3141 46.9279 26 11.1602 12.1981 13.8439 15.3792 38.8851 41.9232 45.6417 48.2899 40.1133 43.1945 46.9629 49.6449 11.8076 27 12.4613 12.8785 14.5734 16.1514 28 13.5647 15.3079 16.9279 41.3371 44.4608 48.2782 50.9934 14.2565 16.0471 17.7084 42.5570 45.7223 49.5879 52.3356 69 13.1211 13.7867 00 20.7065 00 09 27.9907 09 35.5345 14.9535 16.7908 18.4927 43.7730 46.9792 50.8922 53.6720 22.1643 24.4330 26.5093 55.7585 59.3417 63.6907 66.7660 29.7067 32.3574 34.7643 67.5048 71.4202 76.1539 79.4900 37.4849 40.4817 43.1880 79.0819 83.2977 88.3794 91.9517

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の偏相関係数について自分の解釈があっているかの確認をしたいのですが、 こればかりは自力ではできないので確認をお願いしたいです。 (画像は参考にした教科書の内容です。ファイルサイズの問題で必要な情報をすべては載せられませんが一応貼ります。) この教科書の内容は ある人... 続きを読む

Gのデータに対して、yおよびxを戦りの像数から下引する次のような る8,備相関係数 のデータに対して,yおよびえを吸りの象数から下刊する次のような S くうか考えられ,それらの影響も限形的であれば、上の1次式のモデルの愛 SyS」 (間題A1.6)。 親がふえるこになる。また,もしこれらの変のうち採力国)が2次関数的 に移響する可能性がある場合には、当のほかにx=という4満日の変数 を予デルに加えておけば、 2次開数的な影響も上のような線格デルにより 分析ることができる。 コーつの重国帰をデルを考える。 -ッ pe ただし、 Sy S Sy S エ-dx p+る。 -のとき、最小2堀法によって求めた重回帰式は次のょうになる。 S, S1 S12 S,p いま去6のように1つの目的変数とp個の説明変数光認を に n個のデータ(数値)が与えられたとしよう. S1y S Sg Sp S= たたし。 表6 重回帰分析の場合のアータ 22 1 帰分析法 S S 日的変哉 明 数 S Sp Sp"Sp S. S 81式のいかをyおよびからあ,為,Xoの回帰が消去されたときの 偏相関係数(partial correlation coefficient)という。 テータ号 そしてS,は行列式Sの1行」列の余因了(行」列の要素を取り除いて作。 Sは式のSの2行2列2)余国子からさらに1行1列の余因子をと 1 『1 『1 T」 ったもの。 S はSの2行2列の余囚子からさらに1行+1引の余因子をと 2 エ以 た行列式に(一1}* をかけたもの)。 | 式からわかるように00式で小される偏相関係数は(a,る,…,ズ)の影響 を除いたyととの相関係数と考えることができる。同様にしてyとxj- っかもめ。 1,2,p)の間の偏相関係数を定識することができる。 また。式に小す行列式Sとその余因子を用いると、ル は次のよう! S , S. も同様に考える。 エ J= (-arュー+) , =(ddエ み) も書ける。(町E A1.7)。 Sie VS」Sa 51と同様にズ,海。, y からyの値を子測するとき、,た。, とりの 関係を示す一つの数式モデルを設定しなければならない、この数式モデル(予 第1式)を11のように与える,必は- , -…, e だけでは説明しきれない部 分の予測誤差を表す。 『122.p=ー こおくとき、変数とpの単相相関係数は次のように書ける。 S Sa, Saは行列式Sの1行1列, 2行2列,1行2列の余因子 去8に示すデータで、yおよびから,石のの国帰が消去されした 5aト ただし、 『121 -ー -4十aエ,サ角約」十, +山i-6 この式を、線形重回帰モデル(linear multiple regression model} と呼ぶ中 * Sas Ss 例7。 ただ。 ときの偏相関係数()を求めよ。 [解] 例6の解答の中に示す行列式Sと式より 回滑の場合(x,平面上のヵ個の点の集まりドに直線をあてはめたが、重回帰 1、 ( , Spー -1 場合には(, , y)の(ゆ+1)次元空間での の点の集まりに対してき次 S』 VS」S。 元超平面 S--(-は)(カー)。 『yト23- -6.941×10° V6171×10×2.011×10 0.623 をあてはめ、それによって説明変数の他x,あ から目的変数の値 を予測する。このときの誤差は式から去?のように表される。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

右の欄の下の方のとこの項数のとこに2のnー1乗ってあるんですけどそれってどうやってわかるんですか? これって2nー1とかじゃダメなんですか? よろしくお願いします

井安 元気フ 難易度 CHECK 1| CHECK2 CHECK3 元気カアップ問題 127 次の連 3 と与えられている。 1 1 8 3 8 5 8 7 16'16 1 13 数列{a.}が, 2'4'4'8 m ;のとき, m の値を求めよ。また Sm= E a, を求めよ。 128 (2) a 1 am= n=1 ヒント ヒント!)これは, 分母2',2?, 2*, …によって, 群数列に分けて考えるとうま。 いくんだね。 n22 ココがポイント 解答&解説 解き 数列 {a,}を次のように群に分けて考える。(第7群の初項) ==は、第7郡 11 a1 a2, a3 a4, as, a6, ay A8,…… Am,… 128 の初項だね。よって, mは 第6群までの各群の項数の 和に1をたしたものだね。 ne 1 1 3 1 3 5 7 1 2 2? 22|| 2 2 2° 2° 24 27 第 第 1 2 群 群 (2項) 第 (1項) (4=2°項) 群 (8=2°項) 群 (2°項) 11 ここで, am= 1 は, 第7群の初項なので, 2 (最初の数 128 20 (最後の数 m=1+2+2?+…+2°+1=63+1=64 (答)」←1+2+2?+…+2は 初項a=1, 公比r=2, 項数n=6(=5-0+1) (2) a 1-(1-2) 1-2 第6群までの各群の項数の和 =2°-1=64-1=63 (最後の数)(最初の数 次に,第1群の数列の和をT, とおくと, の等比数列の和だね。 T,= 1 3 2"-1 11 {1+3+5+…+(2"-1)}←1+3+5+……+(2"-1) は, 2" 2" 2" 2" 初項1,末項2"-1, 項数 2"-1の等差数列の 和より, こ 27-1 項 2 2 n-1 1 :X 2" -=2"-2 となる。 (末項 ミ 項数 初項 2 - 品 S.=2.-2T. 6 6 2 a, =X T,+as4= 11 2 22"-2+ n=1 n=1 128 第6群までの数列の和)(第7群の初項 am=asa) n=1 T,=22" 63 n=1 n=1 11 63×64+1 4033 128 (答) 2(1-2) 63 128 128 1-2 2 a=2", r=2, n=6の 等比数列の和 196 リ

回答募集中 回答数: 0