学年

教科

質問の種類

数学 大学生・専門学校生・社会人

全部わかりません。 助けてください😭

右のデータは, 1パックに入っていた10個の卵の重さを計測し, 小数第1位を四捨五入したものである。このデータについて,次のも のを求めよ。 (1) 平均値と中央値 考え方 1 63 60 56 59 63 64 58 60 59 58 (単位:g) e) トン の( 中央値は, データを大きさの順に並べたときに中央にくる値。データの個数が偶数の 肉) 場合は,中央の2つの値の平均をとる。 でよ さでのモ モ) (2) 四分位偏差 考え方 データを大きさの順に並べたとき,4等分する値を小さいほうから, 第1四分位数,第 2四分位数(中央値), 第3四分位数とよび, (第3四分位数)- (第1四分位数) を四分位範 囲という。四分位偏差とは, この四分位範囲の2分の1のこと。 (3) 標準偏差 (根号がついたままでよい) 回 合 Hoof 合 効 ケま 旨ケ対学小 右の表は,ある神社の境内にある杉のうち, 樹齢のわ かっている5本について, 樹齢工年と地上1mにおける幹 の直径y cm を調べたものである。次の問いに答えよ。 (1) エ, yのデータの組を表す点を右の ry平面上にとり, この5本の杉の樹齢と直径の間にはどのような関係があ るか答えよ。 2 樹木番号 の 2 3 r(年) 42 29 60 39 55 y (cm) 20 16 32 21 36 プレートは 合場 160食 40 (2) 変量z, yのn個の組(zi, y), …, (In, Y)がある 30 とき, エ, yの平均をそれぞれz, y として 20 今度× 10 Szy n (zュ-) ( …+(zn-エ) (4-) 大ゲ光 合 t 0 10 20 30 40 50 60 エ を2, yの共分散という。また, エ, yの標準偏差をそれ ぞれ Sz, Sy とするとき 手国S の女ゆはで送へ (yーy)(z-ェ)(y-y) Szy =ー SzX Sy リ-y I 2(エーエ) - Slool で計算される値rを, zとyの相関係数とい う。右の表を埋めて, 5本の杉の樹齢と直径 の相関係数を求めよ (小数第2位を四捨五 の 42 20 代ン出く の 29 16 (3 60 32 39 21 るるっ 36 55 入して,小数第1位ま ので)。計算には電卓を 実使用してよい。 0 0 計| 225 125 =」のリニ ラ ー 15

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の(1)の回答の意味はわかるのですが、(2)の回答がどうしてそうなるのかが分かりません。 どなたか説明して下さらないでしょうか

231 8 OOOO π p.227 基本事項2 求めよ。 基本事項I) 熱車 計> (0S<T, 0キ π y=mx+n m=tan0 目して、この 2 n x n 40 m 0 のなす鋭角0は, a<Bなら B-a または ァー L図から判断。 元ー(B-a) 4章 x 備 O0 24 で表される。 この問題では, tana, tan 8 の値から具体的な角が得られないので, tan(8-a)の計算に マ8 0200 加 加法定理 を利用する。 角の公式 法 0nied 0nieonie-0200 定 る象限に注 「解 答 2直線の方程式を変形すると 3x+1, ソ=-3/3x+1- cosaであるか 単に2直線のなす角を求める だけであれば,p.227 基本事 項2の公式利用が早い。 y=-3/3x+1\ 1 2 in) 図のように,2直線とx軸の正の向 きとのなす角を,それぞれ α, Bと すると,求める鋭角0は 0=β-e 13 ie 0 傾きが mi, m2の2直線のな す鋭角を0とすると B mi-m2 tan 0= 0 1+m,m2 定 3 0 ソ= -x+1 tan 8=-3/3 で, 2 fies=8 2tan 別解 20) 2直線は垂直でないから tan α= 2 tan β-tanα tan 0 tan 0= tan(B-a)= 1+ tan Atan a e0020 3 -i(13/3) 5 -3/5-)=+(-3,5)-号- 2 の値を /3 3 1+ 2 三 α-B) 2倍角の公 =12 2 (ダール 「もよい。 rtcos 2c ana coa 0<e<号から 0=号 0=2 3 200+ 7 <O<分であるから 2 2 12直線 y=2x-1 とx軸の正の向き 2 とのなす角をαとすると tanα=2 y=D2x /y=2x-1 42直線のなす角は, それぞ れと平行で原点を通る2直 線のなす角に等しい。 そこ で、直線 y=2x-1を平行 移動した直線 y==2x をも tanα±tan 4 4 tan a土 π 0 4 1千tanatan お 1n(2土 n20co Tπ -1 2土 (複号同順) とにした図をかくと、見通 1千2·1 1 sin しがよくなる。 『あるから,求める直線の傾きは 3sina 3 昼本直線のなす角 直線y=mx+n とx軸の正の向きとのなす角を0とと 直線y=2x-1と角をなすのを求めよ。 2直線V3x-2y+20, 3/3 x+y-1=0 のなす鋭角0を。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)がわからないです。 やってるのですがここの単元はほんっとに基礎からわかりません、 暇な方、時間がある方詳しく回答お願いします。

N--ト OOO00 重要例題 70 ガウス記号とグラフ [a]は実数aを超えない最大の整数を表すものとする。 (1) [2.3], [1], [ーV2]の値を求めよ。 (2) 関数 y=[2x] (-1Sx<1)のグラフをかけ。 (3) 関数 y=x-[x] (-1<x<2)のグラフをかけ。 あ nSxくn+1ならば [x]=n が成り立つ。これを場合分けに利用する。 (2) -1SxS1より -2<2x<2であるから, 幅1の範囲で区切り, -2<2x<-1, -1<2x<0, 0<2x<1, 1<2x<2, 2x=2 で場合分け。 (3) -1S×S2から, -1<x<0, 0<x<1, 1<x<2, x=2 で場合分け。 (9 指針 実数xに対して, nを整数として 遊の大 [2.3]=2 [1]=1 (1) 2<2.3<3であるから 1S1<2 であるから -2<-/2<-1であるから (2) -1Sx<1から 16天2 12.3 t - +T 解答 る -2-1 0 1 2 3 * -2<2x<2 [10-1.e.1-] (8) -2<2x<-1すなわち -1<x<- 1 のとき y=-2 → (2) 1- こY4直送 2- --sx<0のとき 032x<1すなわち0Sxく のとき -1S2x<0すなわち ソ=ー1 2 100 1O 1 X 152x<2すなわち - ハ×<1 のとき 1 ソ=1 -1 2 すなわちx=1 よって,グラフは右の図 のようになる。 (3) -1Sx<0のとき [x]3D-1から 0Sx<1のとき [x]30 から 1Sx<2のとき [x]3D1から [x]=2 から よって,グラフは右の図 のようになる。 2x=2 のとき ソ=2 -2 ソ=x+1 3 ソ=x 1 ソ=x-1 x=2のとき ソ=2-2=0 -1 0 1 2 x ガウス記号と実数の整数部分 実数xが整数nと0冬か<1を満たす実数pを用いてx

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

問題としてはこのURLのやつでexercise2.2.9の問題です。 2.2.9. Define T : ℓ^2(Zn ) → ℓ^2(Zn ) by (T(z))(n) =z(n + 1) − z(n). Find all eigenvalues of T.... 続きを読む

16:22マ l 全 の Exerc: 164/520 matrices, convolution operators, and Fourier r operators. 2.2.9. Define T:l'(Zn) - → e°(ZN) by ニ Find all eigenvalues of T. 2.2.10. Let T(m):e'(Z4) → '(Z) be the Fourier multipliei (mz)' where m = (1,0, i, -2) defined by T (m)(2) = i. Find be l(Z4) such that T(m) is the convolutior Tb (defined by Th(Z) = b*z). ii. Find the matrix that represents T(m) with resp standard basis. 2.2.11. i. Suppose Ti, T2:l(ZN) → e(ZN) are tra invariant linear transformations. Prove that th sition T, o T, is translation invariant. ii. Suppose A and B are circulant NxN matric directly (i.e., just using the definition of a matrix, not using Theorem 2.19) that AB is Show that this result and Theorem 2.19 imp Hint: Write out the (m + 1,n+1) entry of the definition of matrix multiplication; compare hint to Exercise 2.2.12 (i). iii. Suppose b,, bz e l'(Zn). Prove that the cor Tb, o Tb, of the convolution operators Tb, and convolution operator T, with b = 2 bz * b.. E Exercise 2.2.6. iv. Suppose m,, mz € l"(Z). Prove that the cor T(m2) ° T(m) and T(m) is the Fourier multiplier operator T) m(n) = m2(n)m」(n) for all n. v. Suppose Ti, T2:l"(Zw) → e'(Zn) are linear tra tions. Prove that if Ti is represented bya matri respect to the Fourier basis F (i.e., [T; (z)]F =A Tz is represented by a matrix Az with respect t the composition T20T, is represented by the ma with respect to F. Deduce part i again. Remark:ByTheerem 2.19, we have just proved of the Fourier multiplier operat Aresearchgate.net - 非公開

未解決 回答数: 1