学年

教科

質問の種類

数学 大学生・専門学校生・社会人

例4.28について質問です。(1)のfx^2+fy^2=、、の式までは分かっているのですがそこからいきなり(2)のラプラシアンの式がどうやって出るのかわからないです。どうか教えてください。

19:06 3/3 変数変換を学んだついでに 4.2.7. 変数変換におけるラプラシアンの表示. : 全単射, C2-級, = -1 とする. 関数 f(x) : D → R, g(s) : UR は f(x)=g(y(z)) = g(s) = f (d(s)) をみたしているとする. [5]. f(x,y) = √√√x² + y² = r = g(r,0). (**) of fi = oni, dxi ga = asa のように書く. 添字の,上下, 文字スタイルで区別がある. ここでは∇f = (....fi....), ∇sg = (..., ga,...) は行ベクトル . 逆写像のヤコビ行列は Þ : ((R”, s = (… .., sª,...) > ) U → D ( C (R¹, x = (..., x², ...))) となる.このとき連鎖律より次の関係式が得られる. f(x) = g(s(x)) * x³ THALT, fi = Σa ga$iº. & 5K füi = Σa ((Σ3 9aß$?) sº + 9asi). B (1) ▽zf = ∇sg.d.同様に∇sg = ∇f.do. (2) Axf := Σi fü = Σa‚ß Jaß(Vrsª, ▼+$³) + Σa 9aArsª. 2² 8² Ər² 20² 9回目終わり 例 4.2.8. R2 の極座標でのラプラシアンの表示 重 : UC (R2, (1,0)) → DC (R2, (x,y)), I = 重-1 πr TO cos -r sin 0 d = Yr yo sin 0 rcos o TI Ty cos o sin 1 T dy = = (d)-1 200 - sine cose) == (-²2) r 注: r = x2 +¥2,0 = tan -1 y の微分はしなくても煙は求められる. I (1) (fæ, fy) = (gr,90) · dV. (fz, fy) = (gr, ¼90) U, U = (- 特に fz + f = g + /1/129. 注: d では1列+2列 (1 行 ⊥2 行ではない). d では 1行2行 (1列+2列ではない). 8² a2 8² 12 10 + + + əx² 042 Ər² r² 20² rar + はそもそも考えない. d = (st) at (= (dd) -1): 第α行を ▽ zsa とする行列 lai (4) A = + U= 問題. R3 の極座標でのラプラシアンの表示. (x,y,z)=d(r,0,4)= (rsin A cos o, r sin A sin p, rcos E ↓ = Φ-1 とする. (1) d = (dd) を求めよ. (2) (fx,fu, fz) = (gr, 1,90, sin694) U, Uは直交行列, と書けることを示せ . cos 0 (3) Ar = ², A0 = A = 0 を示せ . r2 sin 0 8² 182 + Ər-2 2002 / sin A cos y sin A sin y cos A cos o cos A sin - siny cos 1 2 20 cos a + rar r2 sin 000 cos o sin 0 sino cos0 72 sin20042 cos 0 - sin 0 0 は直交行列と書ける. を示せ. | .d=Uの2行目に !を3行目に • itc-lms.ecc.u-tokyo.ac.jp 3 rsin 0 を掛けたもの. Ć

未解決 回答数: 0
数学 大学生・専門学校生・社会人

統計学検定3級の問題です なんでこの公式?で相関係数が求められるのですか? sxy/sx*syの公式をどう変形したら3枚目の写真の形になるのでしょうか 教えてください!

問13 2つの変数x, y について次のデータが得られた I y 〔1〕xとyの相関係数はいくらか。次の①~⑤のうちから最も適切なものを一つ 選べ 19 1709 ① 0.85 ② 0.34 ③ 0.11 001122 361 Lpatos A [2]xおよびy の出現頻度に関して,次の I ~ⅢI の記述を考えた。 相関係数 I.xの値は0,1,2が同じ頻度で出現した。 Ⅱ.yの値は1,2,34,5,6の2倍の頻度で出現した。 ⅢI.xが1であったとき、yの値は1のみ出現した。 相、平 4 25- IとⅡIとⅢIはすべて正しい x分散・分散 この記述 I~Ⅲに関して、次の①~⑤のうちから最も適切なものを一つ選べ。 2001-10 Ⅰ のみ正しい人 ② ⅡIのみ正しい ③ ⅢIのみ正しい ④ ⅠとⅡIのみ正しい 分音 6 4 -0.24 問14 ある中学校で数学と理科の試験を行ったところ、 数学と理科の得点の相関係数 は 0.24 であった。 各生徒の得点をそれぞれ2倍したとき, 数学と理科の得点の相関 係数は0.24の何倍になるか。 次の①~⑤のうちから適切なものを一つ選べ。 BOLSO 21 ①1/√2 ② 2 ③ 1 -0.79 直一平均12 PRELA 2 46 4 問15 次の散布 ある。 なお 理科の得点(点) 100 90 80g 70 60 50 【名】統計検定3級・4級 【本書の感想】 本書をどこでお知りにな 後を考えている

未解決 回答数: 1