学年

教科

質問の種類

数学 大学生・専門学校生・社会人

1番なのですが、何度やっても2/3 になります。 そもそも式の作り方が違うのでしょうか?

2023年度 「経済数学」 練習問題 (24) 5.3 ラグランジュの未定乗数法 ラグランジュの未定乗数法を用いてzあるいはuの極値を求めよ (24-1) z = xy x + 2y = 2 (242) z = x(y + 2) (24-3) z = x - 3y - xy (244) z = x + y - xy (245) z = 4x²-3x + 5xy-8y + 2y² (246) z = 4x² + xy + 4y² (247) z = a² + b² + c² (248) z = a + 2b + 4c (249) z = ab + bc + ca 1 (2410) z = : = (a³b³ + b³c³ + c³a³) (2411) z a³ + b + c (2412) u = xy + yz + zx-x-y-z (2413) u = 8x + 4y + 2z (2414) u = 2x + 4y + 6z (24-15) u = p + 2q + 3r (2416) u = 2a³3 +2b³ +2c³ ただし、a≠0,b ≠ 0c ≠ 0 O s.t. s.t. s.t. s.t. s.t. 8.t. s.t. s.t. s.t. 1 1 (24-1) z=(x = 1, y = 1=3) 1, 8.t. s.t. 8.t. s.t. s.t. s.t. ( 24-17 ) ある消費者の財 Q1 Q2 qs に関する効 u=q² + 2q² + 4 s.t. であるとし、 各財の価格が p1=2, p2=4、ps=8 あるとする。 このとき、この消費者のそれぞれの最 準 u を求めよ。 なおラグランジュ関数はLとおき よ。 (24) =0 O (24 - 7) z = 2(a = b = c = λ= }) (248) z = 42 (a = 2, b = 4, c = 8, λ = ¹1), Lλ = x + 2 y 2 = 0 =A₁ & 1² 11 2 X = ²/²/2 3 z = -42 (a = -2, b = -4, (24-9) 7= 3 (r = 1 c = -8, λ = ラグランジュ関数は L = xy + x(x122-2) この関数をx.g.入で偏微分してゼロとおくと L x = y, - ^. Ly = x - x = 0 h = 1 r = 1 1 = 21 2x+3y-2x=2 2(x-x)+3g=2

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0