学年

教科

質問の種類

数学 大学生・専門学校生・社会人

大学数学の問題です。SIRモデルを題材にした微分方程式です。連立微分方程式で解こうと考え、固有値から固有ベクトルを求めようとしましたが綺麗な値にならず、間違っているように感じました。考え方から回答例まで教えていただきたいです。

問題 14. ある感染病Aに対する SIR モデル d.s -BS(t)I(t) ニ dt dI BS(t)I(t) - っI(t) ニ dt dR 1(t) ニ dt を考える。ここで, S(t)は感染可能者, I(t) は感染者, R(t)は除外者である. また, ある町の人口を Nとすれば, N= S(t)+I(t) + R(t) が成り立つとする. そして, s(t) = S(t)/N, i(t) = I(t)/N, r(t) = R(t)/N としたモデル ds ニ dt 1 -i(t) :0 50 di 1 ニ dt dr 1 i(t) 50 ニ dt を考える。 さて, N= 1000 とするとき, 感染病 Aが拡大しないようにするには,少なくとも何人にワクチン接種をしなけ ればならないか?ただし, ワクチンの効果は 90%(ワクチンを接種すれば 10人中9人は感染しない)とし, 初期 感染者は 19名,初期除外者は0名,ワクチン接種は感染可能者のみに行うものとする.(8点) (解答欄:必ず途中式や理由などを記載すること) N=100 基本理産激が121大きとき感染者は増にするをめ、 これが 1さり小さくなるとよい。 VC)をつクチン緒の数だとすると. ds s -) icは) - dt 14 AV At。 271 190 こ Io sCt) 13

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

静大工学部の数学の大問一つの採点をお願いします!!!(100点満点で) それと写真のオレンジの〰︎部分で第1次導関数を求めるために2x-1で割らないといけないと思うのですが、この時2x-1≠0であると書いて確認をしないといけませんよね?その時の記述がどうしてもわからないので... 続きを読む

(1) 227900-905-19w-903=8utzBスgleodt +S39wde 190-903= faut2XBJalt- 2Btgedt+Rblt -2290-9os こ 8u +2X E9e0-90] -284glandt t6getodt-2Xgorget ニ fw-29dtt S3giaobt よって-1900-91013= 800+ S69cdt -2Jtgididt-0 (2) fw= 423-5X +2人+f00 ここでよ0は定数であるためd0=12X-10人t2=2(3X-U122-1) fwこ0とすると ここでよのは3次関数であり、どの保数はDより大きい ため根込形は右の12のとうにちる このとき極小値は出でとる (まくまより) よってfはFAX-SX+tdw=tio) そ+f10)ニ 、f10:2 よてw=478-52 +2入t2 送にんt0-2のときfん=23t-り(22-),80=00とE す。であり、下の土醤減表よりよいはたしかに極み値 4をとまでもつ。 したダらてよんこ4x-5パ+2X+2 ト~1ま Ht10|- よuつ格大 ソ「極小1 次に一もg0-903:da-2539(tidt +J gar dt gu=-dw.+21519hde -Bg dt tgo1 AV H へ 2 0 g0=-6c0+229 イ 22-リダ0#c0=2(30-0(2X-) 父は04とき g0=2(30-) このとき両辺を種めして 9w=16X-2)dX = 3X-21+C (Cは種6) またのに入こ0を代入して 3 96dt=-fw=-2 J6 34-2ktC)dt=-2 [ポーズヤく大了るニー2 8-4+2C=-2 2C--62C-3 Aよってg0:3と-2X-3 ノ人上より)み一-せ入 90:3パ-22-3 4

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題の問題13-1(3)(4)、問題13-2の解答を作ってください! お願いします!

2021年 物理学演習2 第13回 デルタ関数 関数f(x)がどのような関数であっても次のような関係を満たす8(x) をデルタ関数という。 「r86) = f0) JO (x * 0) l0(x = 0) 8(x) = このデルタ関数は物理学者の P.A. Dirac によって発明された。名前に関数とついているが、正確 には関数ではなく汎関数の一種の超関数で、線型性と連続性などを満たした汎関数である。 関数: 数 → 数 例えば x → y=f(x) 汎関数:関数 → 数例えば f(x) → f(0) = Sf(x)6(x)dx デルタ関数は関数では無いが、実際には下記のような関数の極限とみなすことができ、どの表現も 同等である。 8(x) = lim 8,(x), ど→+0 8,(x) = {o (x> £/2) 1 28 8(x) = lim 8,(x), E→+0 6,(x) = 2x?+ 2 1 8(x) = lim 8,(x), ど→+0 6(x) = e VTE 8(x) = lim 8,(x), 1 8,(x) = 「e-ddk Zt J-o 1(x2 0) lo (x < 0) 8(x) = 0'(x), 0(x) = 3次元のデルタ関数は以下のように1次元のデルタ関数の積になる。 8(r) = 6(x)6(y)8(z) (o (x =y=z= 0) lo (x =y=z=0以外の場合) 8(r) = 問題13-1 f(x)はx| → oで0となるなめらかな関数とする。デルタ関数8(x) f(x)6(x - a)dx= f(a) について次の性質を証明しなさい。 (1) x6(x) = 0 (2) 6(ax) = )(a>0) (3) 6(x) = 0°(x) so (x< 0) l1 (x> 0) 0(x)は階段関数(ヘビサイド関数)であり、e(x) = である。 {8(x - a) + 6(x + a)}(a> 0) 問題13-2 正規分布を表す次式 = (x)9 がa→ +0 のときにデルタ関数となることを証明しなさい。 1 -exp V2To 2g2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学数学、複素関数論、テータ関数に関する質問です。 写真のテータ関数の無限積表示(5.24)の式の1行目の形にどうやってしているのかと、命題5.22の(5.26)の証明を教えていただきたいです。

(b) テータ関数 ヤコビは楕円関数論の研究において, 次の級数を導入した。 9(2) = 22(-1)"-!g"-1/2)" sin(2n-1)Tu n=1 2(g/4 sin Tu-g/ sin 3Tu+q^/4 sin 5Tu-…). (5.23) 三 これはヤコビの楕円テータ関数(以下単にテータ関数(theta function))と呼 ばれるものの1つである. limd,(u)/2q'/4=Dsin Tu なので, 0,(u) は sin Tu 9→0 の一種の拡張と見ることができる。 伝統的な記号にならって, 以下 2ミe2miu a=2 q= eir, と書こう.gl<1だから Imr>0である. このとき(5.23)の右辺は TiT 2Tiu 9=e 9 2と(-1)"-1gm-1/2)?_2"-1/2 _2-n+1/2 =iこ(-1)"gm-1/2)°n-1/2 n=1 2i n=-00 = ig4z-1/2 (-1)"g"(n-1)z" n=-00 と書き直すことができる.右辺に3重積公式(5.22)を用いれば, テータ関数 の無限積表示が得られる: 0,(u) = iq'4z-1/2(1-2) II (1-g"2)(1-g"z-')(1-g") n=1. = 2q/4 sin Tu I (1-2g" cos 2Tu+g")(1-g"). 三 (5.24) n=1 命題5.22 0,(u) はuの整関数で 0,(-u) = ー6,(u). (5.25) 0 0(u) = 0 < (m,nEZ). 0,(u+1) = -0, (u), 9,(u+t) = -e-mi(r+2u)9, (u). (5.27) u= m+nT (5.26) 0 + 2u) [証明](5.25),(5.26) は(5.24)から簡単にわかる. また前節の無限積

回答募集中 回答数: 0