学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解説がなく解き方が分からないので教えて頂きたいです!(特に印の付いたところ)

にあてはまる数を求め,解答のみを解答欄に記入しなさい。解答が有 (3) 次の にあてはまる数を求め,解答のみを解答欄に記入しなさい。解答が有 [1) 次の 理数となる場合には,整数または既約分数の形で答えること。 理数となる場合には,整数または既約分数の形で答えること。 (1) a+b+c=2, d'+が+c"= 6, +-のとき。 1.1.1 (1) を定数とする。xの2次方程式ー(&+10)x+(10k+1) = 0が重解をもつんの値 イである。ただし、 は、 ア|<| イ とする。 ab+bc+ca= ア イ となる。 (2) xの2次方程式rー5x+2 = 0の2つの解をa, Bとする。また、xの2次方程式 +px+q=0 (p, qは定数)の2つの解はa+2, B+2である。このとき。 p+q=| ウである。 のとき,a'+- ウ g+ 4-/12 である。 3 2次不等式ょ'-8x-33 >0の解と,不等式あくェーa| (a, bは定数)の解が一致 するとき、a= あ= である。 Get 4 にあてはまる数を求め,解答のみを解答欄に記入しなさい。解答 - 17 (2)aを-4Sas4を満たす定数とする。放物線y=+7ェーa'+6a+ いて、次の が有理数となる場合には、整数または既約分数の形で答えること。 [4) AABC において,ZBAC =2ZACBである。ZBAC の2等分線と BCとの交点を Dとするとき,BD = 2, CD= 3である。次の 答のみを解答欄に記入しなさい。解答が有理数となる場合には、整数または既約分数の 形で答えること。 Dにつ にあてはまる数を求め,解 ア]であり、放物線①の頂点のy座標の最小値 放物線のの頂点のェ座標は は コである。 また。放物線のをェ軸方向に一1. y軸方向に一2だけ平行移動した放物線を②とす る。放物線のの頂点のェ座標は|ゥ (1) COSZACD = 「ア ×ACである。 であり、放物線のの頂点のy座標の最大値 である放物線のをCとすると,C上 (2) AB = イ である。 は である。y座標の最大値が の点(, y)で、xが整数かつyく0となるものは オ 側ある。 (3) AABCの面積は, |ウ である。ただし、 ウ は有理 エ 数。 は最小の正の整数とする。 2、 (4) AABDの外接円の半径は、 となる。 3

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

経済学の質問ですが、内容が数学のものでしたのでこの場を借りて質問させて頂きました。文章にある割引利得の数式の意味がわからなく、そのためにある補足説明も読みましたが、数学が苦手な私は数列と無限級数などざっくり説明されても分かりませんでした。もし誰か出来たら、写真上の文章をも... 続きを読む

られたらこちら 済学でよく用いられる方法は, 引利得の総和 (以下単に, 割利得 ガンマ, 小文字) に対して6万円の金が1年後には利子がついて! 1つを採用し, 繰り返し囚人のジレンマ、 略が対戦するとき、 毎回のゲームで行動の組 (C, C) が選択される。 将来利得が割り引かれる原因は, いろいろなものが考えられる。 たとえば, 金銭的な利得の場合, 預金の利子率y(ギリシャ文字の らこちらも協力に戻る戦略である。 列といい う。とく ように, 将来利得の割引 数列とし で公差 また が対戦するとき、 毎回のゲームで行動の組 (C,C) が選択さい このとき、 2人のブプレイヤーは利得5の無限列。 できる 5,5, に 数 を得る。このような利得の無限列の評価として, ゲーム理論ちの 済学でよく用いられる方法は, 割引村得の総和 (以下単に, 割引IBe 和という)である。割引利得の考え方は, 将来の利得を現在時点。 評価する場合,額面より割り引いて評価するというものである。た とえば、1年後にもらえる1万円を, 現在価値に換算して0.7万円 の和 と書 an が無 と評価することである。 この割引の係数0.7 のことを将来利得の割 引因子という。割引因子の値が大きいほど, 将来利得を現在利得 と同程度に高く評価する。 利得5の無限列 (5,5,)の割引利得科 は, 6 (ギリシャ文字のデルタ, 小文字) を将来利得の割引因子とする とき,等比級数の和の公式 ( ds ④) より, と 5+56+ 58 + 5 と計算される。 ここで, 6 (0<6<1) である。 1-6 ガンマ, 小文字) に対して8万円の預金が1年後には利子が 142 第7章 繰り返しゲー( 済がま

未解決 回答数: 1