学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(4)の式と(5)の式の説明を分かりやすく教えて頂けませんか?

第2章 確 家 12 5. 理(3) として採用されている. 以上の定理は確率測度 P が与えられていればどんな型の標本空間にも適 できる。もちろん, これらの定理が使えるためには, 右辺の確率の値がわか。 ていなければならない. 前に指摘したように, 標本空間が有限個の点だけをる むときは,この種の事象の確率の計算はとくに簡単になるので,いま議論をこ のような標本空間に限定することにする。 有限標本空間に対する事象 A の確率を求める際の第一歩は,標本点の各人 に確率を割り当てることである. これらの確率は, 確率の公理のはじめの2つ を満たすように割り当てねばならない。 すなわち,これらの確率はすべて非色 の数で,その和が1となるようなものでなければならない. 確率モデルが予測 に有効であるためには, 特定の標本点に割り当てる確率が,実験を多数回繰り 返したとするときその標本点が得られると期待される回数の割合と一致する上 うなものでなければならない. このような割り当ての可能性はわれわれの経験 や外部の情報,対称性に関する考察, またはこれらを一緒にしたものに基づく であろう.それゆえ,サイコロを転がした経験があってもなくても,図2の標 本空間の各標本点には1/36 の確率を割り当てることが現実的なのである。 標本点の総数を n とし, 各標本点に割り当てた確率を p1, P2, る。各標本点は1つの可能な結果を表わすから, それらは1つの事象である。 この種の事象を単一事象という. これらの事象を e1, @2, *… …, en で表わす. 明 らかにこれらは排反な事象である.さて, いかなる事象 Aも標本点の集合で あるから,Aはそれに対応している単一事象の和である.ゆえに, 公理 (3) に よって次の式が得られる。 2 *……, Pn とす n だすこと P(A} =2 P{e} =M p. と思た k UA ここで和は Aに含まれるすべての標本点についての和である.宝共具(3) 偶然をともなうゲームの多くは, 初期の確率論発展のための原動力であっ た。これらゲームの標本空間は有限個の標本点から成り,すべての標本点には 同じ確率が割り当てられている. これはたとえば,クラップ* とよばれるゲー ム(その標本空間は図2で与えられている)の場合にもいえることである. これ らの標本点の各々には確率1/36 が割り当てられる. n を標本点の総数とし, J(A) を集合 Aの中の標本点の個数とすれば, いまの場合はすべてのi=1, A A 2個のサイコロを用いて行なう 孫の取1

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この写真の赤線で引いてあるところがわかりません、具体的には、 1本目はX=Ax+Bで、X(0)=0なんだからB=0ではないのか?なぜA=B=0なんですか? 2本目は理解できました、X=Ae^√−λx+Be^-√−λxで、X(0)=0だから0=A+Bで、これはA=B=0でない... 続きを読む

と変数以上の関数について,その偏微分を含んだ微分方程式を偏微分方程式という。 特に次の偏微分方程式 °u du =c? dr? (c>0) at を熱伝導方程式という。 要点1 du 熱伝導方程式 c? at °u (c>0) は,解をu = X(x)T)とおいて解くことがで dx? きる。この方法を変数分離法という。 (1)u=X(x) T()を式(13.5.1) に代入して整理すると, 解説 T(t) c°T(t) X"(x) X(x) (13.5.2) となる。この左辺はtだけの関数であり, 右辺はxだけの関数である。したがって, 式(13.5,2) の両辺はある定数に等しい。そこで, この定数を一とおく。よって,式(13.4.1)は2つの方程式 X"+入X=0 (13.5.3) T'+AC°T=0 に分解する。この2つの方程式を解いて, u=X(x)T()とおけば, 解が得られる。 (2)ここで,微分方程式 X"+AX=0に, X(0) = 0, X(L) =D 0という境界条件が与えられていたとし よう。 もし入=0ならば, X=Ax+B (A, Bは任意定数) と表されるので,、境界条件からA=B=0とな 2-V-Ax と表されるので, これも境界条件からA=B=0と V-Ax る。え<0のときも, X=Ae' + Be なる。したがって, 入>0を仮定できる。 33 え>0のときの解は, X=AcosV入x+BsinV入xである。さらに, 境界条件x(0) = 0なので, A=0である。よって, X=BsinVAxである。さらに境界条件X(L) =D0より, Bsin L、入 = 0 1 を得る。B=0ならばXは恒等的に0となるので, B+0である。よって, sin L入 = 0 である。したがって, LA 入=[ (n=1,2,…) = Nπ, すなわち L P2

回答募集中 回答数: 0