学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解析のテストです。 これの大門1が分かる方いらしたら、教えて欲しいです!

18:30 (2.1) 極限 解析学 II 中間試験 試験問題 (平成30年11月27日 (火) 3時限 実施) 注意 第1問 第2問 第3問 第4問 第5問 第6問 すべてに解答して下さい。 解答は問題ごとに解答用紙の所定の箇所に記入して下さい。 解答用紙 (両面使用) は合計3枚あります。 すべての解答用紙 (3枚) にクラス, 学籍番号、氏名を記入して提出して下さい。 白紙の解答用紙にもクラス, 学籍番 号 氏名を記入して提出して下さい。 = [第1問] 関数 g(x,y) について、以下の問いに解答せよ. (1.1) g(x,y) , 点 (12) における1次の近似多項式 P1 (x,y) は, P1(x,y) = e-2 + 4e-2(z-1)-4e-2(y-2) で与えられることを示せ . 以下, (1.1) にて求めた Pi (x,y) を f(x,y) とおく. (1.2) 点 (x,y)=(1,2) における f(x,y) の勾配 grad f (1,2) を求めよ. (13) f(x,y) の v = ($n) ∈ R2 方向の (x,y)=(1,2)における方向微分 Duf (12) を求めよ. ただし ||||=1 とする (1.4) 関数 g(x,y), f(x,y) のグラフ=g(x,y), z=f(x,y) に関して、点(x,y) = (1,2) を通る 等位曲線をそれぞれ C2, Cf とおく. Cg, Cf の方程式をそれぞれ求めよ. (15) (14) にて求めた等位曲線 C, Cf と, grad g(1,2) の概形を同一の ry平面に描け ただし、 grad g (1,2) は点 (1,2) をベクトルの始点とすること. [第2問] 次式で与えられる関数 f(x,y) について, 以下の問いに解答せよ. 22 ((x,y) / (0.0) のとき) /12+12 ((x,y)=(0.0) のとき) 中間試験 H39.pdf f(x,y)= 2 f(x, y) = 0 lim (x,y) (0.0) <x2+y2 y² (2.2) 関数 f(x,y) が (x,y)=(0,0) において連続かどうか調べよ. を調べよ. [第3問] 次式で与えられる関数f(x,y) について, 以下の問いに解答せよ. x² + y² x² + y² ((x,y) / (0.0) のとき) ((x,y) = (00) のとき) (3.1) 極限に基づく偏微分係数の定義に従って (0,0) を求めよ. (3.2) 偏導関数 f(x,y) を求めよ. … 4G 0 完了 [第4問] C2級の関数f(x,y) について以下の問いに答えよ. (4.1) f(x,y) とz= ecose, y = esine との合成関数f(ecose, esine) に対して0に関す dz d²z ある導関数 および をそれぞれ 0 の関数として求めよ. do d02 (4.2) f(x,y) とz=rcosb,y=rsin0 との合成関数z= f(rcos0,rsine) に対しての母に を,r, 0 の関数としてそれぞれ求めよ. 8²% az 関する偏導関数 および2階偏導関数 20¹ arae [第5問] 関数 f(x,y)=√1+2x-yを考える. 以下の問いに解答せよ. (5.1) 偏導関数 f(x,y), fy (x,y) を求めよ. (52) 2階偏導関数 f(x,y), fry (x,y), fuy (x,y) をそれぞれ求めよ. (5.3) 点 (x,y,z)=(1,1,f(1,-1)) における曲面z = f(x,y) の接平面の方程式を求めよ. (5.4) 点 (x,y) = (1, -1) のまわりでの f (x,y) の2次の近似多項式を求めよ. Q [第6問] 関数 f(x,y)=x^-4xy+2y² の極値を調べよ(極値とそのときの (x,y) の値を求める こと) ....

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

大学の「微分積分」で出題された周波数の課題です。 (1)だけでもいいのでわかる方いらっしゃったら教えてください。

2 以下の説明を読み、 設問 (1) (6) 答えよ. 授業中に周波数を少しずらした二つの音を発生させて、唸りが聞こえるこ とを実演した.この現象を数学的に記述してみよう。 音とは、空気の振動が空気中を伝播して耳に届くことで認識される自然現 象である. tを時刻 (単位:秒) として、振動がy=sin (ct) (cは定数) の 形で表される波を正弦波と呼ぶ。 正弦波の周波数 (単位:Hz=1/秒) とは 「波が1秒間に何回振動する か」 を表す量である. 例えば sin (2t) は 「周波数1の正弦波」 であるが、 この音波は人間の耳には聞こえない。 人間の可聴域はだいたいf=20Hz 15,000Hz であると言われている。 (1) 周波数 f(Hz) の正弦波を時刻t (秒) の関数で表せ。 (ヒント: f は正の整数であると考え、 t=1のときに sin の中身が 「f回回転 「した角度」を表すように定数を定めれば良い) さて, 音波は重ね合わせの原理が成り立つ。 つまり、二つの地点から発せ られる音波がある地点Pでそれぞれ a(t), b(t) で表されるとき, それら を同時に発生させると P では a(t)+b(t) という音波となる. いま周波数 f=400Hzを中心として、そこから前後に1Hz ずらした二つ の周波数 f=399 Hz, fz = 401Hz を考えよう。 (2) 周波数ffzの正弦波を同時に発生させたときに観測される音波 a(t) を二つの三角関数の和の形で表せ。 (式になったの値は代入 しなくて良い。) (3) h = f1 = f +1 であることと、 三角関数の加法定理を用 いて、上の式を二つの三角関数の積(の定数倍) の形で表せ。 (4) この積に現れる二つの三角関数のグラフの概形をt=-1からt= 1までの範囲でそれぞれ描け. (一方は正確に描くのは人間には 不可能なので雰囲気で良い。 もう一方は正確に描くこと.) (5) (4) を用いて音波 α(t) の概形を描け. (6) この唸りの周期は何秒か? 以上.

回答募集中 回答数: 0