数学 大学生・専門学校生・社会人 3ヶ月前 数I問題 二次関数にて(3)の問題が解説を見ても場合分けyいこ(x-2)^2 y=4とするとの所が理解出来ず 教えていただけたら助かります🙏 2次関数 基本 3 x 2次関数y=x-2ax+6 +5... ① (a,bは定数であり,a>0)のグラフが点(-2,16) を通っている。 完成 (1)6αを用いて表せ。また、関数①のグラフの頂点の座標をαを用いて表せ。 (7) b=-4a+7 4ata Ca, -a² - 4a+1/2 A (2) 関数①のグラフが軸と接するとき,αの値を求めよ。 a70より 標準 C₁ = (-b) 2. (S) (3) (2) のとき,0≦x≦ (んは正の定数)における関数 ① の最大値と最小値の和が5となるような 応用 の値を求めよ。 03 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 3ヶ月前 (2)の問題なのですが、3枚目の写真にも下線部を引いたように、『項目C=項目A÷面積』なので、『面積=項目A÷項目C』となる理由を教えてほしいです。 練習 4 下表は、P~Wの8つの州から構成されているX国の自動車保 状況をまとめたものである。 項目 C 面積1km² 項目 A 台数(台) 項目 B 人口 1000 人 あたりの台数 あたりの台数 251.4 P 1.26 198.7 0108 21.1 Q 336.2 3.21 104.6 0.1 38.6 R 459.7 3 153.0 0.14 68.6 S 512.4 2.15 237.7 08 01 41.0 T 365.4 1.58 230.7 016 58.9 U 1025.4 2,55 401.3 0.06 64.1 V 211.7 0.89 235.5 0,11 24.9 W 647.7 1.89 343.6 0.11 75.3 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 3ヶ月前 ②の問題なのですが、考えられる組み合わせとして『xw□v□』または『□xwv□』となる理由が分かりません。vは、先月の順位が4位だっただけであって、今月の順位ではないと思うのですが、どうしてvが4位と両方の組み合わせでは固定されているのか教えてください。 問07 リピート チェック 別冊 006 査 推論② 順番を推理する VW、X、Y、Zの5店舗を、毎月売上高の高い順に順位付けしている。 先 月と今月の順位について、 次のことがわかっている。 I) Vは先月より3つ順位が下がった Ⅱ)W の順位は、 先月も今月も Xより1つ下だった Ⅱ) 先月のZの順位は4位だった NV) 先月、 今月とも、 売上高が他の店舗と同じ店舗はない VOI〜IVの情報から判断できる先月のYの順位として、考えられるものはどれ か。 次のA~Jの中から1つ選びなさい。 OA 1 位だけ OB 2位だけ OC 3位だけ OD 5位だけ ○E 1位か2位 ○F 1 位か3位 OG 1位か 5位 OH 2位か3位 ○12位か 5位 OJ 3位か 5位 テストセン ②I ~IVの情報に加えて、次のことがわかった。 V) 今月のYの順位は、Xより下だった I~Vの情報から判断できる今月のYの順位として、考えられるものはど れか。 次のA~Jの中から1つ選びなさい。 OA 2位だけ OB 3位だけ ○C 4位だけ ○D 5位だけ ○E 2位か3位 OF 2位か4位 OG 2位か5位 OH 3位か4位 ○1 3位か5位 OJ 4位か5位 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 4ヶ月前 (10)と(11)を教えてください🙇♀️ れるとき, 線分AM を2:3に外分する点をGとする。 このときGの座標は (10) である。 (10)3点A(x,y), B(x2,y2), C(x3,y3) を頂点とする △ABCにおいて,辺BCの中点をM, (11)0≦0<2のとき、不等式√3tan0-10 を解くと 11 と である。 13 である。 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 4ヶ月前 数学 ベクトル 画像の⑵を教えていただきたいです。解説を見ても求め方がわかりません。 よろしくお願いいたします。 Oを原点とする空間上の3点 A, B, Cが, |||=||=||=2, OA・OB=2,OBOC = を満たして いるとき、次の(1),(2)の問いに答えよ。 (1) 内積OAOC がとり得る値の範囲を求めよ。 (2) 四面体OABCの体積の最大値を求めよ。 解答 (1) 13 (1-2√6) OA・1/3(12/6) (2) √6 9 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 4ヶ月前 数学 ベクトル 画像の問題の解き方を教えていただきたいです。 よろしくお願いいたします。 例題12 Oを原点とする空間上の3点 A, B, Cが |||=||=||=2, OA・OB=2,OBOC = 1 を満たして いるとき,次の(1),(2)の問いに答えよ。 (1) 内積OA OC がとり得る値の範囲を求めよ。 (1)内積 (2) 四面体OABCの体積の最大値を求めよ。 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 4ヶ月前 間違えていたら教えて欲しいです No No. Date D f(x)=x+xy+xy-8x1 極値を求めよ。 +x= 3x² + y²+2x-8 の fy=2xy-2y +x (x-9)= ty (x-1)=0 を連立方程式を用いて解くと、 2xly-2g-2g(x-1)=0 y=0、x=1 なので x=1のとえ 13ty2+2-8=0. + 4 = 1√3 x= -2, 3 ここで、 6x+2 2g=12x-8-4-442 2y 7-0 th 3x² + 2x-8=0 Left(6)03-31 beeff (f) (2.)) = (1)(x.g)=(1,土)のどれ decH(1)(x)=12-8-4-12=-12<0である よって、難点なので、極値をとらない。 (11)(2)(-210) のと またい det H(t)(27)=48+16-4=600 fx(-2.0)=-10-0 H(-2.0)=+4+16=12 (例)=(-2.0)で極大値1をとる (1)(x+y=(1/10)のとき、 64 20 det H (6) (218) = 4 - 3 - 4 -- <0 あって、単点なので、植をとられ。 である なので (i) ~ (iii) £7. 14 4 (x)=(-2.0) で極大化に をとる 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 5ヶ月前 (2)についての向きがよく分かりません。 解説を見てもどうゆう考えでこう書いているのか分からないので、教えて欲しいです。 全く想像できてない状態です。 -2=160=4 北は攻へ右ねじを回すとき、 ねじが進む向き 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 5ヶ月前 連続性求める問題です 教えて欲しいです。答えは不連続です 1 (2) f(x-3) + (x-2)=(0,0) MEZ. x=rcy=tsind をおくと、 1+40 とかる BaOsind (+)-(--) 717+ P 1 1470 +(rcs) fito 日を定 roto 08277 $90 orio the cas³ Usin Cos704970 解決済み 回答数: 1
数学 大学生・専門学校生・社会人 5ヶ月前 (2)(10)(11)の答えと解き方を教えて欲しいです (1) 9x12xy + 4y2 を因数分解すると ① になる。 (2)5+√3 の整数部分αは ② 小数部分は ③ であり, 1 1 + である。 a +6+1 a-b-1 解決済み 回答数: 1