学年

教科

質問の種類

数学 大学生・専門学校生・社会人

教えてほしいです、、🥲 中等教科教育法数学①です、! 回答の流れも一緒に教えてくださると、本当にすごく助かります、、💦 ②もあげるので、そちらもお時間あれば答えてくださると嬉しいです😖

中等教科教育法数学 ⅡI 第1設題 2 3 14 15 6 18 次の無理数の分母を有理化せよ. 1 (1) (2) 1+√5 +√7 1 2-35 (3) 1 1+√3+2√9 V6v3 + 10 - V6√3-10 の値を簡単にせよ. 次の問いに答えよ. (1) 多項式 + 34 + 53 + 522 +3 + 1 を実数係数の範囲で因数分解せよ. (2) 多項式 100 + 275 + 32:50 + 4225 + 5 を 2² + +1 で割った余りを求めよ. 実数, y, ²x2+12+22=02, (aは正の定数) を満たして変化するとき, 3 + y + 2-3xyzの 値の最大値、最小値をそれぞれ求めよ. 次の漸化式で定まる数列 {an}の一般項を求めよ : an+2=23/an+1 a² Qo=1, a1=2. f(x)=2x3 +32-2 とする. このとき, 次の合成関数の値は, 10 進表記の下で,1000個以上の9を含 むことを示せ: f(f(...ƒ(9))). 10個 △ABC において, AB = 5, BC = 7, CA = 8 とする. 次の問いに答えよ. (1) 角のうち1つであることを示せ . (2) △ABC の各頂点を各辺上にもつ正三角形DEF を考える.但し, 頂点 A, B, C はそれぞれ辺 EF, DF, DE 上にあるとする. このとき, 辺 EF の長さの最大値を求めよ. f(x)=x-10x2+kx とする.但し, k は正の実数とする. (1) 方程式f(z)=0が3つの実数解をもち, それらの解が互いに1以上離れているためのんの条件を 求めよ. (2) (1) の条件を満たすんのうちで, 曲線y=f(x) とz軸とによって囲まれる図形の面積を最小にす るものを求めよ. 19 100円 105円の硬貨合計 4個を用いて B 円払うとする. ある A, B について, 相異なる支払い 方法が2通りあるようなAの最小値を求めよ. |10| 次の問いに答えよ. (1) 1からnまでのn個の自然数のなかから, 相異なる任意の2数をとってつくる, あらゆる積の和 を求めよ. (2) 1からnまでのn個の自然数のなかから, 相異なる任意の3数をとってつくる, あらゆる積の和 が次で与えられることを示せ: 1372(n+1)^(n-1)(n-2).

未解決 回答数: 1
数学 大学生・専門学校生・社会人

A5の問題の答え教えていただきたいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

A1(1)~(7)教えて欲しいです!

(報告・発表の場合は各間途中計算 or 証明 or 引用を明記のこと 答のみの答案は評価しません) A1. 次の式や値を((1) f(x) 以外は関数を用いずに)できるだけ簡単な形で表せ: 1 (0) Sin1 A + Cos-14 (1) f(x)= tan's +1 (2) 210g33log2 ただし対数の底は共に1でない等しい任意の正の数. Cos-¹ (3-10882) (3) (5) Sin' (sin 2) (4) f(x)= x log x log |x| Exercises A (Tan-¹x)² Tan-1 A2. 与えられた関数f(x) の(最も広い) 定義域を求め,次にf(x) をできるだけ簡単な形で表せ. 以上にもとづき y=f(x)のグラフを描け. ただし対数の底は共に1でない等しい正の数. sin² I (1) f(x)= (2) f(x) = √√x² + (√=x)² (3) f(x)= sin x (6) Tan' (tan 3) 1 A4. f(x)= log2 う A3. 関数 f(x)=log3 | |, g(x)=3 について,次の問いに答えよ. (1) f(x) および 合成関数 (fof) (z) の (最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 ( fog) (z) と (gof) (z) をそれぞれできるだけ簡単な形で表せ. (4) - log₂ log2 √√√√₂ (7) Cos-' (cos 4 ) | y = Tan'sのグラフはテキスト p.33 図 3.8 を引用するとよい ] 2² - 2-* 1 + x g(x) 1- x 2 +2- (1) f(x) およびg(z) の(最も広い) 定義域をそれぞれ求めよ. (2) 合成関数 (fog) (z) をできるだけ簡単な形で表せ. (3) 合成関数 (g of) (z) をできるだけ簡単な形で表せ. K = cos2 (Tan-12 ) = (1) f(-x) = f(x), g(-x) = −g(x) (3) f(x+1)=2f(z) (5) f(2x) =1+f(z) について,次の問いに答えよ. A5. 次の性質をもつ関数の例をそれぞれ1つずつ挙げよ. ただしf(x),g(x) は定数 (関数) ではないものとする. (2) ƒ(²-) = −ƒ(2), g(=) = 9(2) (4) f(x+1)=f(x) (6)# ƒ(2x) = f(x)

回答募集中 回答数: 0