学年

教科

質問の種類

数学 大学生・専門学校生・社会人

右に書いている解き方ではダメですか?

A 889 18A4 【解説】 平面図形からの出題である。 任意の △ABCの外側に三つの正三角形 △ABD, BCE, CAF をかき,それ ぞれの正三角形の重心をG,H,Iとするとき, △GHIは正三角形となる。 この三角形をナポレオンの三角形とい う。また,AH, BI, CGは1点で交わる。この点を第一ナポレオン点という。 第4問 場合の数と確率 【解法 】 odnos 賞 (1) 太郎さんの袋にはグー () が1枚, チョキ () が4枚,花子さ んの袋にはパー (1) が1枚, チョキ () が4枚入っているから, 1回目の勝負で太郎さんが勝つのは, (太郎, 花子)のカードの取り出 し方が () ()のときである。 よって、求める確率は1/13×1 4 4 1 8 + × 5 5 25 5 CE) 00005 1回目の勝負で花子さんが勝つのは, (太郎, 花子) のカードの取り出 し方が (,)のときである。 よって、求める確率は1/3x1/2= 25 (2)3回目の勝負で太郎さんが勝つのは、2回のあいこの後, (太郎,花 子)のカードの取り出し方が (,),( 図)のときである から、求める確率は (1)×(×) (4)×(×) × + 3 3 2-3 4 × = 3 25 3回目の勝負で花子さんが勝つのは、2回のあいこの後, (太郎, 花子) のカードの取り出し方が(,)のときであるから、求める確率は 4 5 13 1 1 3 3 25 DA as 00 AB がを (3)2回目の勝負で太郎さんが勝つ確率は 3 3 =(x+1/x1)x(x) 4 4 4 4回目の勝負で太郎さんが勝つ確率は 6 25 1 (++)× (׳)× (2×)× (±±±±±)- X 12 X 2 12 25 25 2回目の勝負で花子さんが勝つ確率は 4 1 25 4回目の勝負で花子さんが勝つ確率は 3 2 12 + (1x16)x(x1)x18x1)x/1/2×1/2)= 5回目の勝負で花子さんが勝つ確率は 1 25 -59 中 pa な No.1!! 校

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

数学です。問題3が分かりません。正弦関数の1次近似の問題です。教えていただきたいです。

問題1 次の等式を考える . 1 Tan +Tan -1 = 3 1 (1)a= Tan -1 β=Tan Tan-1 1 とする. tana, tanβの値を求め,0 <α+β< " を示しなさい. (2) tan (a + β) を求めなさい. (3) 上の等式を示しなさい. (4) 3辺の長さがそれぞれ 1,2, 5と1,3,√10 の直角三角形のタイルがある. これらを並べて 45°を作る方 法を述べなさい. たりが入っている 問題2 ある菓子にはn個に1個の割合で当たりが入っている. これを個購入し、少なくとも1つ以上 の当たりが出る確率を Pn(m) とする. (1) Pn(m) を n,mの式で表しなさい. (2)nが大きいときPn(m)≒1- (a = 1 ea m を示しなさい. n (3) n = 20 とする. P20 (m) を 0.8にするために必要なm を推定しなさい. ただし, log5 = 1.609... を用 いてよい. 問題3 関数の近似値を求める簡単な方法として1次近似がある. ここでは正弦関数の1次近似を考える. (1) x=0 のとき sinææを示しなさい. (2) sin 8°の近似値を求めなさい。 また sin 8° の実際の値を調べなさい. (3) 以下の文中の を示しなさい. 「車いすが走行できる傾斜は自力で 5° 以下, 介助ありで10°以下とされている. 玄関の段差等にスロープ (坂)を設置する場合、 必要な長さはおおよそ 60 x 〔段の高さ] + [傾斜角度] である.」

解決済み 回答数: 1