学年

教科

質問の種類

数学 大学生・専門学校生・社会人

有識者の方解説お願いしたいです。

曲面のパラメータ表示 p:U→ R° (p e C®(U)を与え,座標曲面 S= 9(U) を考える.また,曲線c= c(s) :I→ U (ce C®(I)) を考え, 7(5):= (poc)(s) : I→Sを測地線とする.このとき次の問に答えよ。 (1) (s) の速度ベクトルの大きさ |会(s)|| は, dy = Const for Vt E I ds を満たすことを示せ、ここで,const とは定数 (constant) の略記号のことで ある。 注:したがって,パラメータ sは, yの弧長パラメータの定数倍となる。 (2) パラメータ変換s= {(t) (t e Ii) を行うと,曲線(t) := (E(t)) は,あ る関数 p(t) e Co (ī) が存在して, ds (()) = p()() for tei T dy dt を満たすことを示せ、ここで(…)" は,(…)のS-接成分を表す。これを座 標曲面Sのパラメータ表示を用いた方程式で表すと, dck ( (%3D 1,2) for teI dPck dc dei -(t) =D p(t). dt? dt dt dt を満たすことと同値である.(式(1.1), (1.2) のどちらを示してもよい.) 注:測地線y=(s) は, 弧長パラメータの定数倍を用いて求められるが,上 記の(1)より,式(1.1) または式(1.2) を測地線の定義としてもよいことが分 かる。ただしこの場合,(t) のパラメータtは,もはや一般に弧長パラメー タの定数倍としては与えられない.また式 (1.1) は,「測地線とは,座標曲面 S上の加速度が速度に各点で比例している曲線」とも解釈出来ることを表し ている。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

矢印のところからの解説がよくわかりません 教えてください🙇‍♂️🙇‍♂️

に 5 第2章 電磁気の開何学 '(の 8証人り 0/ lsの| lo 0 コ11Zの1 (259) e*(の 0 1 0 〆⑨め 和隊凍特に置こう) は 4210 の:飲分さ4ー 0 で計算したもゃので ある・: UN d41(の IRONSO ー1 1 = d 頁 5 (230) (DNSNNWUU 叶 っまり行列 o は配位空間 9O(3) の原点ぇ三0 (すなわち単位元7) における接 ベクトル (tangent vector) である. 他の 4.() について ゃ同様に微分してミっ の独立な接ベクトルが得られる ・ 0 0 (0)まUli U義まN0 iM0NR0S も15T 02一 OS0O 0の 0渦中計上U -1 0 0 0 一般にリー群の原点における接ベクトル空間をリー環とい う (補足 2.13 参照). 群 5O(3) の接ベクト 空間として得られるリー環を so(3) と表記する. 上記の {an, gs, gs} は so(3) の基なのである. 逆に (2.29) を微分方程式だと考え (任意の初期条件 z(0) = (gz,の)” を 与えて) これを積分すると, a の指数関数として 41() が生成される : ue) 0 eむーー|0 cosz 一sint 30 0 sin? coS4 任意の 〈ベクトル〉 (232) ⑭ 三 4の1 十 の2Q2 十 0sQs E s0(3) についてもゃ同様にこれを積分して回転 4() = e? が得られる. つま り 〈ぐ2 トル〉 (e リー環) を積分して運動 (G リー群) が生成される. (ベク トル) 9 は生を生じる(4) を生成する) 行列 (作用素) 。 であること に注意しょ う. (2.32) を行列の形で書く と

解決済み 回答数: 1