学年

教科

質問の種類

数学 大学生・専門学校生・社会人

影で見にくくすいません 解答のところでシャーペンで①と書いているところ見て欲しいです。 なぜ絶対値β➖絶対値bnになるのか分からないので教えて欲しいです。

x 2 数列の収束と発散 23 基本 例題 018 数列の収束とE-N論法の段階的考察 すべての自然数nに対してb,≠0 である数列{bm} が収束して, limbm=B,B≠0 n100 が に収束することを証明せよ。 本基 とする。次のことを利用して、数列{1} (i) 任意の正の実数に対して、 ある自然数 No が存在して, n≧N となるすべ ての自然数nについて,|bn-β<sが成り立つ。 (n> No) (i)ある自然数 N が存在して,n≧N となるすべての自然数nについて, |bm-B< 21/2Bが成り立つ。 (税込)(8) 指針 E-N論法で,以下により 1 B-bn |bm-B| イーモニ bn B bnB |bnB\ が十分小さくなることを示す。 (i) を用いて,分子のbm-βがいくらでも小さくなること (1) (i) を用いて、 1 bal が上に有界であること (1) 解答 n→∞のときBであるから,十分大きい自然数 N に対して,n≧N となる すべての自然数nについて、1bB 12/13が成り立つ。 このとき,n≧N ならば 131-161=10-B11/131 よって1/181<100116-1-1月では?? これとβ≠0 より ならば 1 2 < となる。 |bn| B 更に、任意の正の実数をとる。 このとき,十分大きい自然数 No に対して,n≧N となるす α6を実数とすると, 三角不等式 a+ba+b が成り立つ。 変形して |a+6|-|a|≧|6| a+b=c とすると |c|-|a|≦|c-al となる。 べての自然数nについて|bm-31<181 が成り立つ。 11. B-bnbn-BI bn Ibn B 2 ここで,N=max {No, Ni} とおくと, n≧N ならば, n≧No かつ≧N であるから以下が成り立つ。 1/1-18-01-106-81-216-812 18 ■ max {No, Ni} は,No 1312 と N1 のどちらか小さ くない方を選ぶ。 B12 B1 2 E=E ゆえに、数列{1} は 1/1 に収束する。 B 検討 この問題では「すべての自然数nに対して 6,≠0」 が仮定されていたが、その仮定を外しても 1 bn B は証明できる。 その場合、数列{6} は B0 に収束するが、途中で0になる可能性 はある。したがって,十分大きい番号nを考えて, b がBに十分近づくようにし,bm0 を保 証してから収束を議論する必要がある。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

最大、最小問題についてです。 鉛筆の()で囲った部分は、解答するときに書かなければ何がまずいのでしょうか? よろしくお願いします🙇

例題 6-10(最大・最小①) A 67 大値を求めよ。 がすべて正で x+y+z=a (aは定数) のとき,積 xy'z の最 謝 解説 関数 f(x,y)において最大値・最小値の存在および最大・最小とな る点が極大・極小であることが明らかな場合がある。しかも極大・極小となる 点の候補がごく限られているならば,ただちに最大・最小が求まる。 [解答] x+y+z=aより, z = a-x-y z=a-x-y>0より,x+y<a よって,x,y が満たすべき条件は, x>0,y>0, x+y <a この不等式によって表される領域をDとおく。 O a また, x'y'z=xy (a-x-y)=axy-xyxy* f(x,y)=axy-xy-x'y^ とおく。 f(x, y) はD上の連続関数で,かつ, D の境界上で値は0となり最大とはな らない。 よって, D の内部で必ず最大となる。 したがって, 最大となる点は停 留点である。 fx(x, y) =2axy-3x2y3-2xy=xy(2a-3x-2y) fy(x, y)=3ax2y2-3x3y²-4x²y3=x²y² (3a-3x-4y) fx(x, y) =0 かつ f(x, y) =0 とすると, 2a-3x-2y=0 かつ 3a-3x-4y=0 囲える 真界を含む 有界閉集合上の 連続関数は Maxとminをもつ これを解くと, x=- a 3' v=0 y a よって,最大となる点の候補は (11/27) a 3' のみであるから, f(x, y) は a (x,y) a (17.12において最大となる。 a a a6 最大値は, 3'2 432

解決済み 回答数: 1