学年

教科

質問の種類

数学 大学生・専門学校生・社会人

下の写真について質問です。 (とあるイベントで先生が書かれた資料をそのまま載せてしまっているのでお返事いただき次第削除させていただきます…💦) 赤い矢印から下の部分です。 何故、それ以前の話から『集合の両端を無限遠点で結んだものと理解できる』となるのかがわかりません… そ... 続きを読む

1 比の値としての co (0、 0) ではない実数の組 (6) と (c,@の について 。g ニ 5e のとき2つの比 gi:5と c:dは等しい (つまり q:5ニc:d) と定義する. これは5元0 のときは比の値が As UVS (# =全) と同値であぁる. 一方, 5 0 のとき比 @: 0 の値は定義きれな と (のをん EYEFISM となる実数 +元 0 が存在することと同値である. ペー 2いい り) の集合を [c : | と書くことにすると, これ は点 (2,) と 原点 (0, 0) を通る直線から (0, 0) を除いたものになっている. 5 と [z:相6 は自然に同一 視できる. 一方 [z : 中 と直線 ッー 1 との交点の z 座標として e は理解できる (gs O| は直線= 1 と交わちらないことに注意) . (2 LEの考察から, 比の集合は数直線 (実数全体の集合) の両端 を無限遠点 oo で 名んだものと理解できる. これは, かたちとしては円周に他ならない. この図形を 実射影直線という・ 人 別のアプローチとして, 各[e:引は H周 z2 トー 1 と必ず直径の両端をなす 2 点で交わることに注意する・ よって [ea :有全 全体の集合は H周において直径上の 9 点 を同一視した図形と考えられる・ これは結果として円周と同じかたちになる.

未解決 回答数: 1
数学 大学生・専門学校生・社会人

図形の定義などを利用した「必要・十分条件」の問題です。解答も一緒に載せました。 解説をしてほしいです❗️ よろしくお願いします🙇‍♂️

四角形 ABCD に関する条件々一んを次のよう の: 平行四辺形である 2: AB=CD かっ BC=DA c: ADヶBC 9: AD/BC かつ とA=ニンC : 一つの対角線がそれぞれの中点で交わる プ: ニつの対角線の長さが等しい の : 二つの対角線か直交する : 長方彩である (1) 条件の9ののうち, 条件4の二分条件であるものをすべて挙げた組み合わせとして正しいも のを、 次の⑥-⑨のうちから一っ違べ。 ラコ @⑩ 5 。 ⑩0 72 @⑨4<。 ⑨ぁ858c7⑳47c@42cア 3) 条件6のーgのうち条件の導要条件であるものをすべて卒げた組み合わせとして正しいも のを, 次の⑳⑩-⑨のうぅちから一つ選べ。 エコ @⑩ ム ceア 0 24< @ gs.ア ⑧ ム ce9< ⑨ム4の @ 7.ぃ太? (3) [。かっしチ」」は4であるための必要十分条件である。 ココに当てはまるものを. 炊 の⑩-⑨のうちから一つ選べ。 @〉。 0< 96 @。 @7 @ヶ2 (9) 条件9一ののすべてを満たす四角形 ABCD はち。 [プコにてはまるものを. 次の ⑩~-⑨のうちから一つ選べ。 ⑥⑩ 寿しない ⑩ 正方形である @ 正方形でないひし形である @ f軸辺彩でない台肛である Fa 1 71

回答募集中 回答数: 0