学年

教科

質問の種類

数学 大学生・専門学校生・社会人

積分の解き方が分かりません 教えて欲しいです🙇‍♀️

【7】2次関数 ける接線を + 16に2点A(3,10), B(5.-14)をとり y=-2x²+4x に 直線ABを1とする。 とんとなで囲まれ Bにおける接線を12, た部分の面積を 求めなさい。 Cとで囲まれた部分の面積をSとしたとき, S1 S2 を とし, 【8】 点A(1,-7)を通り2次の係数が-1である2次関数で, 2次関数 Cy=xに接す るものは2つある。 接点のx座標が小さい順に C1, C とする。 このとき、次の間 いに答えなさい。 (1) CとCの接点の座標, CとCの接点の座標をそれぞれ求めなさい。 (2) C, C., C2で囲まれた部分の面積を求めなさい。 【9】2つの2次関数 C1:y=x2-7x+10,C2: y=x^2+x+2の共通接線をと するとき,次の問いに答えなさい。 (1)の方程式を求めなさい。 (2) C1, Cz, 1 で囲まれた部分の面積を求めなさい。 【10】2つの2次関数 C1: y=x2-7x+10,Cz:y=x²+x+2の両方に接する 2次の係数が−1である2次関数をCとするとき、 次の問いに答えなさい。 (1) CとCの接点の座標, CとC2の接点の座標をそれぞれ求めなさい。 (2) C1, C,C で囲まれた部分の面積を求めなさい。 【11】 3次関数 Cy = 2x6x2 +5x+7上の点A(2,9) における接線を1とすると き,Cとで囲まれた部分の面積を求めなさい。 【12】 xy平面上の曲線 C: y=x11x²+21x-10 と直線l: y=-10x+11 で囲 まれた部分の面積を求めなさい。 【13】 xy平面上の曲線 C: y=x(x-1) と直線l: y=kx (0<k<1) で囲まれた 2つの部分の面積が等しくなるようなk の値を求めなさい。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

写真はロピタルの定理をε-δ論法を用いて証明したものについてですがらわからないことが3つあります。 ①なぜδをさらに小さくすると、青線のような不等式が成り立つのですか? ②どの部分の不等式を変形したら赤線の不等式が出てくるのですか? ③赤線の不等式が成り立つときなぜ定理が証... 続きを読む

定理4.6 f(x),g(x) が (a,b) 上の微分可能な関数で lim f(x) = lim_g(x) =+∞ エロ+ f'(エ) をみたしているとする。 このとき 極限 lim = = A が存在するならば x+a+ g'(x) f(x) lim == A za+ g(x) が成り立つ。なおこの定理は lim の部分をすべて lim あるいは lim, +α14 lim におきかえても成立する. b- 8 ◆証明 任意の0<<1に対して,あるδ0が存在し,a<x<a+δに対して f'(x) A-< <A+EAKE g'(x) が成り立つ。必要なら80をさらに小さくとって,f(x)>0,g(z) >O(a<x< a+δ) となるようにできる。 コーシーの平均値定理から, a<x<a +δに対して,あ ∈ (+8)が存在し, f(x)-f(a+8) f'(g) = g(x) − g(a+8) g'(§) が成り立つ。ゆえに A-ε< f(x)-f(a+8) である. したがって f(x) = + g(x) g(x) である. ここで 9(x) − g(a+6) = 1 g(x) g(a+6) (エ) f(a+8) →1 (x → a+), g(x) − g(a + 8) f(x)-f(a+δ)g(x)-g(a+8) f(a+8) 9(x) g(x) − g(a+8) <A+e 価 以 grat (エ) 0(土)であるから,必要ならばさらにを小さくとることにより1> g(z)-g(a+6) f(a +8) g(x) >1-ɛ, 0< <e としてよい。ゆえに g(x) f(x) (A+c) +g> >(A-) (1-e)=A-e(A+1-c) g(x) が成り立つ。よって定理が証明された, 残りの主張も同様の議論で証明できる.

回答募集中 回答数: 0