学年

教科

質問の種類

数学 大学生・専門学校生・社会人

至急🚨 帝京大学2022年の過去問の解説お願いしたいです🙇 どなたか数学が得意な方解説お願いします🙇

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし,分母は有理化する こと。 また、解答が分数となる場合は既約分数で答えること。 (1) 整式(x+1)(x+3)(x-3)(x-9) + 16x2を因数分解すると (x2- ア イ となる。 x- (2) αを6-22 をこえない最大の整数とし, b=6-2√2-αとするとき 1 62 + +2= 62 ウ である。 (3) 集合A={9, a, a-3},B={1, 4, 26 + 1,62} について, ACBであり, a bの値がともに負であるとき, a = I b = オ である。 〔2〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。また、 解答が分数となる場合は既約分数で答えること。 (1)a,bを定数とする。 放物線y=5x²ax+a+bの頂点が点 (2, 1) であるとき, b= であり、この放物線をx軸方向に3,y軸方向に1だけ平行移動し ウ である。 た放物線の方程式はy=5x2 + ア イ x+ (2) 2次不等式xx-2<0 を満たすすべてのが 2次不等式(x-a)(x-a-5) > 0 を満たすとき,定数aの値の範囲は設する際 as I オ Saである。 〔3〕次の にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし, 解答に根号が含まれる場合は根号の中の自然数が最小となる形とし, 分母は有理化する こと。 また, 解答が分数となる場合は既約分数で答えること。 円に内接する四角形 ABCD において, AB=5,BC = 3,CD=2,∠ABC=60° 2つの対角線 AC と BD の交点をEとする。 このとき, (1) AD= (2) BE ED 〔4〕次の (3) M = 0 1 p ア 3 BD = 10453 (3-2 PH エ であり, BE = E 4 5 イ 年 L 1 (1) 下の図があるクラスで行ったテストについての, 37人の得点の箱ひげ図である 四分位偏差は 四分位範囲は とき, このデータの範囲は イ ウ である。 四角形 ABCDの面積は にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 ア オ 9 である。 a, b, 83, 9, 52, 79. 38, 41. 63. 35. である。 . 19 20 (点) (2) 次の10個からなるデータについて 中央値が48, 第1四分位数が38, 第3四分位 .b= エ オ である。 ただし, a < bとす 数が77であるとき,a=

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

【至急】帝京大学2021年数学の過去問です。 解説お願いしたいです🙇 どなたかお願いします🙏

〔1〕次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) a+b+c= 2, a²+b²+c² = 6, ab+bc+ca= ア となる。 (2) a = as+ 2 4-√ 12 は . 1 1 1 +. a b C 1 1 1 + + a h² 1 オ である。 エ のとき、a2+1/2 ウ 〔2〕を4≦a≦4を満たす定数とする。 放物線y=x2+7x-a²+6a+17 ....... ①につ 4 いて,次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答 が有理数となる場合には, 整数または既約分数の形で答えること。 11/12のとき、 イ (3) 放物線 ① の頂点のx座標は ア であり, 放物線 ① の頂点のy座標の最小値 イ である。 また, 放物線①をx軸方向に-1, y 軸方向に2だけ平行移動した放物線を②とす であり, 放物線② の頂点のy座標の最大値 る。 放物線 ② の頂点のx座標は である放物線②をCとすると, C上 個ある。 オ ウ である。 y座標の最大値が の点(x,y) で,xが整数かつy<0となるものは は I エ 〔3〕 次の にあてはまる数を求め, 解答のみを解答欄に記入しなさい。 解答が有 理数となる場合には, 整数または既約分数の形で答えること。 (1) kを定数とする。 xの2次方程式x^ー (k +10)x+(10k+1)=0が重解をもつんの値 イ である。 ただし, 1 とする。 は. ア ア (2) xの2次方程式x2-5x+2=0の2つの解をα, β とする。 また,xの2次方程式 x2+px+q=0(p,qは定数)の2つの解はα+2,β+2 である。 このとき, p+q= ウ である。 (3) 2次不等式x²8x330の解と, 不等式6< |x-al(a,bは定数)の解が一致 するとき, a= エ b= オ である。 〔4〕 △ABCにおいて, ∠BAC=2∠ACBである。 ∠BACの2等分線とBCとの交点を D とするとき, BD = 2, CD =3である。 次の にあてはまる数を求め, 解 答のみを解答欄に記入しなさい。 解答が有理数となる場合には, 整数または既約分数の 形で答えること。 (1) cos ∠ACD = ア ×ACである。 (2) AB= イ (3) ABCの面積は, 数, である。 ウ は最小の正の整数とする。 (4) △ABD の外接円の半径は, 2√ < I オ 3 である。 ただし、 となる。 ウ は有理

未解決 回答数: 1
数学 大学生・専門学校生・社会人

【至急】帝京大学2023年数学の過去問です。 解説お願いしたいです🙇 どなたかお願いします🙏

|-53- 〔1〕 数学(総合) 〔2〕 (1) 752-2の整数部分をa、小数部分をbとするとき. b= ア さらに, (2) 4x+ 1 4x = 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 bx+y 2-b となる。 (1) aを定数とする。 xの2次方程式 y= イ ウ となり (a+26)²= =bを満たす有理数x, y は, x = カキ =√5のとき、64x+6 x 2 + (a + 1)x + α² + α-1=0 ...... ① <a< について, 判別式Dは. D=- ア a². a+ ウ となる。 したがって, ① が異なる2つの実数解をもつαの値の範囲は, エオ カ ⑩x238 ① 38 < x 39 239 < x² ≤ 40 コサ ③ 40 <x≦41 ④ 41 < x² キ したがって, xの整数部分が コ (2) 正の数xとその小数部分yに対して, x2+y2 = 40 ① が成り立つとする。 xについて次の⑩~④のうち,正しいものは ク である。 エオとなる。 サ となる。 y=クケとなる。 となる。 ケ とわかる。 これと①より. 〔3〕 αを定数とする。 放物線y=-x-ax +7・・・・ ① について考える。 放物線 ① について次の⑩~④のうち,正しいものはア とイ である。 ただ し、解答の順序は問わない。 〔4〕 ⑩ 放物線①は上に凸である。 ① 放物線①は下に凸である。 ② 放物線①はx軸と共有点をもたない。 3 放物線①はx軸と共有点を1つだけもつ。 ④ 放物線 ① は x軸と共有点を2つもつ。 -1≦a≦3における放物線① の頂点のy座標は,a= ウ のとき最小値 I カキ ク a= オ のとき, 放物線①は, 放物線y=-x²+xのグラフをx軸方向に ケコ y軸方向に サ だけ平行移動したものとなる。 をとり, a= COSA= (1) AB = 7,BC=5,CA=4√2 の△ABCについて さらに, sin B = siny_ sin a オ である。 さらに, sin B sina ア イ である。 のとき最大値- コサ シス である。 また, 外接円の半径は カ をとる。 キ である。 (2) AB = 4,BC=7. CA = 5の△ABCの辺BC上にBD =3となる点Dをとる。 ∠BAD = α, ∠CAD = β, ∠ADB=y とする。このとき ク ウ オ I である。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

この問題の解説お願いします。計算過程もお願いします❗️

第2問 (必答問題)(配点 30) [1] 先生と花子さんは, 半径が等しい二つの円C:x+y2 = 4, C2x2+y2-8x+12=0 について話している。 二人の会話を読んで,下の問い に答えよ。 先生: C2 の中心の座標を求めてください。 花子:中心の座標は ア |です。 先生: 円 C, 上の点 (x1, y) における接線の方程式を求めてください。 です。 花子: 接線の方程式は (1) 先生は,さらに問題を花子さんに出題した。 ものを、次の①~③のうちから一つ選べ。 ⑩ x1x+yiy=2 ① x+y=2 ② x1x+yiy=4 3 x+y=4 x1 y1 X1 y1 花子: 接点の座標は カ です。 先生: よくできました。 イ 問題 円 C2の接線で, 円 C を面積の等しい二つの部分に分けるものが2本あ る。この2本の接線について,円 C2 との接点の座標を求めよ。 (3) カ に当てはまるものを,次の ⑩~⑤のうちから一つ選べ。 0 (4-√3, ±√3) ① (4-√3, ±2√3) (2) (3, ±√3) 4 (4+√3, +√3) (3) (3, ±2√3) と求まりました。 先生: よくできました。 また、 ク 0 先生これで(i) は解決しましたね。 次に (ii) を考えましょう。 太郎:y= キ としていいですから, 2次方程式 Q(x)=0 の解をα, βと して、 解と係数の関係を用いて, +β2 をk で表すことができます。 花子ということは, f(k)=²+B2+y²" とおいて, y=f(k) のグラフを考えれ ばいいですね。 先生: そうです。 太郎: ²+B2+y”のとり得る値の範囲は キ 0 テ ケ ク の解答群 に当てはまる ツ から一つずつ選べ。 ただし、 テ ① > イ ト の解答群 ① m テ a² +B² + y² ト ツ テ ウ に当 N ナニ ナニ ヌ ト に当てはまるものを、次の各解答群のうち (4+√3, ±2√3) ヌ に当てはまる数を求めよ。 まる については同じものを選んでも 4 S | 先生:では, 円 C2 上の点Q(p, 9) における円 C2 の接線の方程式は,どのよ うに考えて求めますか。 花子: 円 C2 の中心が原点に移るように円 C2 を平行移動した円が, 円 C です。 この平行移動で点Qが点Q’ に移るとすると, 円 C1 上の点Q における 円 C の接線の方程式は I となります。 このことから, 接線の方 (2) 選べ。 程式は I オ オ と求まります。 に当てはまるものを、次の各解答群のうちから一つずつ I の解答群 ⑩ (p+4)x+gy=2 ① (p-4)x+gy=2 ② (p+4)x+qy=4 ③ (p-4)x+qy=4 オ の解答群 ⑩ (p+4)(x+4)+gy = 2 ② (p-4)(x+4)+gy = 2 ④ (p+4)(x+4)+gy=4 ⑥ (p-4)(x+4)+gy=4 〔2〕 先生と太郎さんと花子さんは, 3次方程式に関する次の問題について話して いる。 三人の会話を読んで、 次のページの問いに答えよ。 問題k を実数とする。 P(x)= x³ (2k+1)x²+(3k²+7k-7)x-3k²-5k+7 とする。 (i) 3次方程式 P(x) = 0 が異なる三つの実数解をもつようなkの値の範 囲を求めよ。 (ii) k(i)で求めた値の範囲にあるときを考える。 3次方程式 P(x)=0 の 解をα, B, y とするとき ++のとり得る値の範囲を求めよ。 先生 まず, (i)から考えてください。 3次方程式 P(x)=0 が異なる二つの実数 解をもつようなんの値の範囲を求めましょう。 太郎: P キ 1=0 ですから, P(x) は x- キ で割り切れます。 P(x) キ で割ったときの商をQ(x) とし, 2次方程式 Q(x)=0 の 判別式をDとすると, 方程式 Q(x)=0 が異なる二つの実数解をもてば よいので, D ク 0 より ケ ① (p+4)(x-4)+gy = 2 ③ (p-4)(x-4)+qy=2 ⑤ (p+4)(x-4)+gy=4 ⑦ (p-4)(x-4)+gy = 4 コ セ が(i)の答えです。 | 先生 (i) の答えは (*) ではないよ。もう少し考えてください。 太郎 そうか。三つの解が異なるから, (*) の条件に Q という条件が必要でした。 花子:確かにそうですね。 じゃあ、 3次方程式 P(x)=0 が異なる三つの実数解 をもつようなkの値の範囲は ソ k. サ くんく- が正しい答えとなります。 または k. ス チ

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

二次関数の問題です。 解答のなみなみ線部分がわかりません。なぜ頂点のx座標がこの範囲にあるとするのでしょうか。他の場合分けが不要な理由がわからないです。お願いします

m 各) 8 2次関数の最大・最小/定義域が動く場合 a を実数とする. 定義域が α ≦x≦a +4 である関数f(x)=-x-4-6の最大値は α の関数で あるので,これをM (α) と表す. 同じく, 最小値をm (a) と表す. M (α), m (α) を求め b=M(a), b=m(α) のグラフを ab平面に (別々に)書け. (名古屋学院大) 最大・最小となる候補を利用 前問は,定義域が一定区間に決まっていて、 関数の方が変化したが, 本間は、関数の方が決まっていて、定義域の方が動く問題である。とは言っても,前問と同様に解くこ とができる.ここでは,前間と違うアプローチを紹介しよう。(なお,これらの解法は, 関数と定義域が ともに変化するときも通用する。) 左ページの①~⑦のグラフから分かるように,y=d(xp)+gのグラフが下に凸の場合, ・区間α ≦x≦B における最小値は, x=pが区間内にあれば, 頂点のy座標 q そうでなければ,区間の端点での値f(α), f (B) のうちの小さい方 ・区間α ≦x≦B における最大値は,区間の端点での値f(α), f (B) のうちの大きい方 である。結局,「最大値や最小値になる可能性のある点は,頂点と両端点の3つのみ」であるから, 「頂点のy座標(頂点が区間内にあるとき), および区間の端点のy座標からなる3つのグラフを描い ておき,最も高いところをたどったものが最大値のグラフ, 最も低いところをたどったものが最小 値のグラフである」 これは, グラフが下に凸な場合のみならず, 上に凸な場合についても成り立つ. 解答 y=f(x)のグラフは上に凸である.f(z)=-(x+2)²−2(a≦x≦a+4) であるから、頂点の座標がa≦x≦at4 にあるとき (as−2≦a+4), 6≦a≦2のとき, M(α)=f(-2)=-2 すなわち, それ以外のとき, M(α)=max{f(a), f(a+4)} つぎに f(x) の最小値は定義域の端点で取るから, m (a)=min{f(a), f(a+4)} ここで, f(a)=-(a+2) 2-2 f(a+4)=-{(a+4)+2}2-2=-(α+6) ²-2 であるから, b= f(a), b=f(a+4) のグラフは図1のようになる. よって, b=M(α), b=m(α) のグラフは, 図 2, 図3の太線である. bto 図3 bto 図 2-6 -2 1 -6 -4 -20. a M. -6 b=f(a+4) b=f(a) b=-2 b=-(a+2)²—2 b=-(a+6)-2 a -2 -6 -4 b=-(a+2)²X -2 max {p,q}は,pg のうちの大 きい方 (小さくない方) の値を表 (1 < す (min{p,g}は,p,gのうち の小さい方 (大きくない方) の値 を表す) MAR -6 ←一般にb=f (a+4) のグラフは, b=f(α)のグラフをα軸方向に -4だけ平行移動したものである. (p.32, 51) MX-2-5 b=-(a+6)²-2 08 演習題(解答は p.57 ) (ア) f(x)=x2+2x+2a≦x≦a+1における最大値をM, 最小値をm とする。 | のとき最小値 M-m=1を満たすaの値は であり, M-mはa= をとる。 2次関数のグラフ ち書き、その交点! (星城大 一部省略) (イ)/ 関数f(x)=x2-2xla≦x≦a+1 (a≧0) における最大値g(α)を求めよ. またg(α) を最小にする α を求めよ. (明星大) (ア) 7,08 のどちら の解法で解いてもよい ろう. (イ) 最大値の候補を活 用しよう. 4

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

二次関数の問題です。 解答のなみなみ線部分がわかりません。なぜ頂点のx座標がこの範囲にあるとするのでしょうか。他の場合分けが不要な理由がわからないです。お願いします

m 各) 8 2次関数の最大・最小/定義域が動く場合 a を実数とする. 定義域が α ≦x≦a +4 である関数f(x)=-x-4-6の最大値は α の関数で あるので,これをM (α) と表す. 同じく, 最小値をm (a) と表す. M (α), m (α) を求め b=M(a), b=m(α) のグラフを ab平面に (別々に)書け. (名古屋学院大) 最大・最小となる候補を利用 前問は,定義域が一定区間に決まっていて、 関数の方が変化したが, 本間は、関数の方が決まっていて、定義域の方が動く問題である。とは言っても,前問と同様に解くこ とができる.ここでは,前間と違うアプローチを紹介しよう。(なお,これらの解法は, 関数と定義域が ともに変化するときも通用する。) 左ページの①~⑦のグラフから分かるように,y=d(xp)+gのグラフが下に凸の場合, ・区間α ≦x≦B における最小値は, x=pが区間内にあれば, 頂点のy座標 q そうでなければ,区間の端点での値f(α), f (B) のうちの小さい方 ・区間α ≦x≦B における最大値は,区間の端点での値f(α), f (B) のうちの大きい方 である。結局,「最大値や最小値になる可能性のある点は,頂点と両端点の3つのみ」であるから, 「頂点のy座標(頂点が区間内にあるとき), および区間の端点のy座標からなる3つのグラフを描い ておき,最も高いところをたどったものが最大値のグラフ, 最も低いところをたどったものが最小 値のグラフである」 これは, グラフが下に凸な場合のみならず, 上に凸な場合についても成り立つ. 解答 y=f(x)のグラフは上に凸である.f(z)=-(x+2)²−2(a≦x≦a+4) であるから、頂点の座標がa≦x≦at4 にあるとき (as−2≦a+4), 6≦a≦2のとき, M(α)=f(-2)=-2 すなわち, それ以外のとき, M(α)=max{f(a), f(a+4)} つぎに f(x) の最小値は定義域の端点で取るから, m (a)=min{f(a), f(a+4)} ここで, f(a)=-(a+2) 2-2 f(a+4)=-{(a+4)+2}2-2=-(α+6) ²-2 であるから, b= f(a), b=f(a+4) のグラフは図1のようになる. よって, b=M(α), b=m(α) のグラフは, 図 2, 図3の太線である. bto 図3 bto 図 2-6 -2 1 -6 -4 -20. a M. -6 b=f(a+4) b=f(a) b=-2 b=-(a+2)²—2 b=-(a+6)-2 a -2 -6 -4 b=-(a+2)²X -2 max {p,q}は,pg のうちの大 きい方 (小さくない方) の値を表 (1 < す (min{p,g}は,p,gのうち の小さい方 (大きくない方) の値 を表す) MAR -6 ←一般にb=f (a+4) のグラフは, b=f(α)のグラフをα軸方向に -4だけ平行移動したものである. (p.32, 51) MX-2-5 b=-(a+6)²-2 08 演習題(解答は p.57 ) (ア) f(x)=x2+2x+2a≦x≦a+1における最大値をM, 最小値をm とする。 | のとき最小値 M-m=1を満たすaの値は であり, M-mはa= をとる。 2次関数のグラフ ち書き、その交点! (星城大 一部省略) (イ)/ 関数f(x)=x2-2xla≦x≦a+1 (a≧0) における最大値g(α)を求めよ. またg(α) を最小にする α を求めよ. (明星大) (ア) 7,08 のどちら の解法で解いてもよい ろう. (イ) 最大値の候補を活 用しよう. 4

回答募集中 回答数: 0