学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解答の 増加するから、以降の解説が全く分かりません。 どなたか解説お願いします。

2 (an) in 211/2/11 基本 例題 029 関数の極限 -δ論法の基本 (am) = f(s) th ★★ The を払えよ! 関数f(x) =x2+1は, x→1で2に収束する。 E0.05 0.005 のとき |x-1|<8 ならf(x)-2|<g を満たすような正の実数の値をそれぞれ1つ定め よ。また、一般ののときはどうすればよいか。 指針 e-δ論法(基本例題 030 の指針参照) の言葉で ya x→1のときf(x) 2になる事実 . 6 2<y<2+s をとっても、それに対応してx=1を中心とす る範囲 0<x-1|<8 を十分小さくとれば、この範囲のすべて のxに対して y=f(x) の値が2-s<y<2+e の範囲に含まれ る」 ということである。 を説明すると 「y=2 を中心とするどんなに小さい範囲(1+8) S 2+cl 2 f(1-0) 2- 1 この収束を示すには、y軸の区間 2-e<y <2+e が任意に与 えられたとき, x軸の区間 0<|x-1| <δをみつけることにな る。 01 - 8 11+8 f(1+δ)-2>2-f(1-δ) であるから,まずはs=0.05,0.005 の場合に具体的に計算をしてか ら 「f(1+8) <2+s ならばf (18) >2-c となること」 を示す。 これにより,f(1+8)=2+s という式から上限となるδを決定できる。 または「任意の正の数」であるから,<e の場合だけでなく, >1の場合も別に考える。 E-δ論法の詳しい説明は本書の53ページまたは「数研講座シリーズ 大学教養 微分積分 の61,62ページを参照。 解答 f(x) は x>0 の範囲で単調に増加するから、ff(1-6)>2-6 かつ f(1+δ) <2+ となる正の数δを1つ定めれば, 1-8 <x<1+8となるすべてのxに対して2-s<f(x) <2+s が成り立つ。 [1]=0.05 のとき (0.95)=1.95, (105) 2.05 であるから, 1-δ<x<1+δとなるすべてのxに対して 2<f(x) <2+が成り立つための条件は 180.95 かつ 1+1.05 である。 例えば,8=0.01 とすると (18)=0.992=0.9801 0.95 より (1+δ)²=1.012=1.02011.05 より 1-8≥√0.95 1+8√1.05 E-δ論法の基本 を満たしている。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

解答のところでシャーペンで①②と書いているところについてそれぞれ質問したいです。 ①a>2のaは何を表していますか? anのことですか?? a>2がan>2のことを示しているのならばa1>2ということは理解できますが、間違っていれば教えて欲しいです。 ②なぜan-an-... 続きを読む

3 単調数列とコーシー列 25 SO ★★ 基本 例題 020 数列の発散と収束する数列の有界性 α>2として,数列{a}を次のように定める。 (本 a=a2-2, an+1=an2-2 この数列は正の無限大に発散することを示せ。 指針 数列{an} が単調に増加することを示す。 解答 収束する数列{a} は有界である。 2より a2 数列{a} が正の無限大に発散することを示すために, bn= 1 束することを示す。 このことは,次の定理により示される。 定理 収束数列の有界性 として, 数列{6} が 0 に an PD (称号の向きは変asaz 262 以下, 帰納的にすべてのnに対して an>2 単調減少 an-an-1=(an-12-2)-an-i= (an-i+1) (an-1- -1-20 よって, 数列 {az} は単調に増加する。 ancian. (+(-2) 271-2) bn=- とおくと, 数列{6} は単調に減少する。 bn 1 an また,すべてのnに対してb>0であるから,数列{bm}は下に有界である。 よって, 数列{bn} は収束するから,その極限値をβとする。 an>2より bn<- 2 21 an=12-2より1_1 (正の内に発話していること。 b2-2であるから bn-12-bn-2bn bn-12 B2=β-233 より β(β+1)(2β-1)=0 [n] 06/1/23より β+1>0, 2β-1<0 よってβ=0 [s) これはliman=∞ であることを示している。 n→∞ 参考 定理 収束数列の有界性の証明 lima=α とする。 このとき、ある番号Nが存在して, n≧Nであるすべてのnに対して N11 |an-α| <1 となる。 三角不等式により|an|-|a|≦|an-αであるから,n≧N であるすべてのnに対して|an|<|a|+1 が成り立つ。 ここで, M=max{|a|+1, |a|,|az|,......., | av-1|} とする。 このとき,Nの場合も、n<N の場合も |an | ≦M が成り立つ。 よって, 数列{an} は有界である。 注意 この逆は正しくない。つまり数列{az}が有界であっても、収束するとは限らない。例えば、 =(-1)" で定義される数列{an} は-1≦a≦1から有界であるが,振動するから収束しない。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

影で見にくくすいません 解答のところでシャーペンで①と書いているところ見て欲しいです。 なぜ絶対値β➖絶対値bnになるのか分からないので教えて欲しいです。

x 2 数列の収束と発散 23 基本 例題 018 数列の収束とE-N論法の段階的考察 すべての自然数nに対してb,≠0 である数列{bm} が収束して, limbm=B,B≠0 n100 が に収束することを証明せよ。 本基 とする。次のことを利用して、数列{1} (i) 任意の正の実数に対して、 ある自然数 No が存在して, n≧N となるすべ ての自然数nについて,|bn-β<sが成り立つ。 (n> No) (i)ある自然数 N が存在して,n≧N となるすべての自然数nについて, |bm-B< 21/2Bが成り立つ。 (税込)(8) 指針 E-N論法で,以下により 1 B-bn |bm-B| イーモニ bn B bnB |bnB\ が十分小さくなることを示す。 (i) を用いて,分子のbm-βがいくらでも小さくなること (1) (i) を用いて、 1 bal が上に有界であること (1) 解答 n→∞のときBであるから,十分大きい自然数 N に対して,n≧N となる すべての自然数nについて、1bB 12/13が成り立つ。 このとき,n≧N ならば 131-161=10-B11/131 よって1/181<100116-1-1月では?? これとβ≠0 より ならば 1 2 < となる。 |bn| B 更に、任意の正の実数をとる。 このとき,十分大きい自然数 No に対して,n≧N となるす α6を実数とすると, 三角不等式 a+ba+b が成り立つ。 変形して |a+6|-|a|≧|6| a+b=c とすると |c|-|a|≦|c-al となる。 べての自然数nについて|bm-31<181 が成り立つ。 11. B-bnbn-BI bn Ibn B 2 ここで,N=max {No, Ni} とおくと, n≧N ならば, n≧No かつ≧N であるから以下が成り立つ。 1/1-18-01-106-81-216-812 18 ■ max {No, Ni} は,No 1312 と N1 のどちらか小さ くない方を選ぶ。 B12 B1 2 E=E ゆえに、数列{1} は 1/1 に収束する。 B 検討 この問題では「すべての自然数nに対して 6,≠0」 が仮定されていたが、その仮定を外しても 1 bn B は証明できる。 その場合、数列{6} は B0 に収束するが、途中で0になる可能性 はある。したがって,十分大きい番号nを考えて, b がBに十分近づくようにし,bm0 を保 証してから収束を議論する必要がある。

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

最大、最小問題についてです。 鉛筆の()で囲った部分は、解答するときに書かなければ何がまずいのでしょうか? よろしくお願いします🙇

例題 6-10(最大・最小①) A 67 大値を求めよ。 がすべて正で x+y+z=a (aは定数) のとき,積 xy'z の最 謝 解説 関数 f(x,y)において最大値・最小値の存在および最大・最小とな る点が極大・極小であることが明らかな場合がある。しかも極大・極小となる 点の候補がごく限られているならば,ただちに最大・最小が求まる。 [解答] x+y+z=aより, z = a-x-y z=a-x-y>0より,x+y<a よって,x,y が満たすべき条件は, x>0,y>0, x+y <a この不等式によって表される領域をDとおく。 O a また, x'y'z=xy (a-x-y)=axy-xyxy* f(x,y)=axy-xy-x'y^ とおく。 f(x, y) はD上の連続関数で,かつ, D の境界上で値は0となり最大とはな らない。 よって, D の内部で必ず最大となる。 したがって, 最大となる点は停 留点である。 fx(x, y) =2axy-3x2y3-2xy=xy(2a-3x-2y) fy(x, y)=3ax2y2-3x3y²-4x²y3=x²y² (3a-3x-4y) fx(x, y) =0 かつ f(x, y) =0 とすると, 2a-3x-2y=0 かつ 3a-3x-4y=0 囲える 真界を含む 有界閉集合上の 連続関数は Maxとminをもつ これを解くと, x=- a 3' v=0 y a よって,最大となる点の候補は (11/27) a 3' のみであるから, f(x, y) は a (x,y) a (17.12において最大となる。 a a a6 最大値は, 3'2 432

解決済み 回答数: 1