学年

教科

質問の種類

数学 大学生・専門学校生・社会人

統計学の知識ある方、以下にある式の導出方法分かりやすく教えていただきたいです。 分かるところだけでも教えてくれると嬉しいです😭 ちなみにこのサイトは、 統計学入門 http://www.snap-tck.com/room04/c01/stat/stat0001.html こ... 続きを読む

19:56 1 allệ (注3) 相関分析と同様に回帰分析の場合も信頼区間を求めることができま す。まずyの推測値の信頼区間は次のようになります。 この信頼区間は母集 団のy推測値の100(1-α) % が含まれる範囲を表し、信頼限界と呼ぶことが多 いようです。 y=a+b=(my-bmx)+bx = my+b(z-mz)→(j-my)=b(x-mz) VR VR V(j-my) = V(j)+V(my)-2C(j,my) = V(g) + -2 = V(y) - VR =V n n n =V(b(z-mx))=(x-m²) 2V(b)=(x-m²) 2VR S エエ (x - ₂)² 2V (6) - Vx{1+ (².²} =VR n S x=X0の時のy推測値の100(1-α)% 信頼限界: U Dol=a+bro ±t(n-2,a) VR -2,0)√| V₁ { 1/2 + ( 2 = m₂) ² } n S エ mx:xの標本平均 Sxx:xの平方和 VR : 残差分散 VR C(jj,my) = y推定値とmyの共分散 t(n-2, α): 自由度(n-2)のt n 分布における100α%点 この100(1-α)% 信頼限界において、x=mxの時の値を計算すると次のように なります。 VR ŷOL =a+bm±t(n-2,0) VR・ -2,0) √/ VR { 1 1 1 + (m₂ - m₂)² S エエ 2²}. =my±t(n-2,a)V n n これは値と残差分散が少し異なるだけで、 平均値の信頼限界(信頼区間) とほ ぼ同じ式であることがわかると思います。 つまり回帰直線は平均値を2次元 に拡張したものに相当し、 y推測値の信頼限界は平均値の信頼限界を2次元に 拡張したものに相当することになります。 次にyの信頼限界を求めてみましょう。 もしaとbに誤差がない、つまりy推 測値に誤差がないとすると次のようになります。 これが許容限界になりま す。 V(g) = V(g+c)=V(e) =VR x=x0の時のyの100(1-α) % 許容限界: gol =a+bro ±t(n-2,a)VVR you x=mxの時: gol = my±t(n-2,a) VVR しかし実際にはaとbには誤差があるので次のようになります。 これが棄却 限界です。 回帰分析の場合は棄却限界のことを予測限界 (prediction limit)と 呼びます。 (x-²)) S エ n n SII V(g+c)=V(g)+V(c) +2C(j,c)=VR /R { 1 + (*² =− m ₂) ² } + V₁ + 0 = VR { 1 + 1 2 + ( x − m ₂ )² ]} x=X0の時のyの100(1-α) % 予測限界: 1 (x-m₂)² yoz=a+bro ±t(n-2.0)/VR =t(n-2,α) √ -2,0) √/V₁ { 1 + 1 + n S エ U x=mxの時: yol = my ±t(n-2,a) 2, a) √/ VR (1+1) VR (1+ 安全ではありません - snap-tck.com

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

 リヤプノフ関数を用いた微分方程式系の安定性解析について勉強をしています。 写真の問題のうち、問23.1の(1)及び問23.2の(3)の解き方が分からないので教えて頂けますと幸いです。原点が中心、半径がルート3の円が不変集合になる理由も併せてお願い頂けるとありがたいです。よ... 続きを読む

23. リヤプノフ関数と安定性* 108 間 23.2 微分方程式系 dy =ーC dt (12) da =リー(=/3-2), (μ は負定数) dt について,次の間いに答えよ。 (1) V(r,g) = (z° +y°)/2 とする. このとき V12) (z,4) を求めよ。 (Ans. -μ(z°/3 -1)a?) (2) (12) の平衡点 (0,0) は安定であることを示せ。 (3) [研究] 点 (o,Yo) が (2o)? + (yo)? <3 を満たすとする. このとき, (zo,10) を通る解はt→8とすると (0,0) に収束することを示せ。 (ヒント. E={(0,9) : -0 <y < 8} であることに注意し, LaSalle の不変原理 と呼ばれる結果(下記参照) を適用する.) 【参考) RT 内の集合 Mは, 任意の co E Mに対し, zoを通る (2) の解が常に M に留まるな らば (2) に対する不変集合と呼ばれる。 LaSalle の不変原理 V(z) (zE S) は (2) のリヤプノフ関数とする. このとき, S 内に留まる(2) の有界解は, t→ o とするとき E:={ueS:Vg)(z) =D 0} に含まれ る(2) の最大不変集合に近づく

未解決 回答数: 1