学年

教科

質問の種類

数学 大学生・専門学校生・社会人

写真はロピタルの定理をε-δ論法を用いて証明したものについてですがらわからないことが3つあります。 ①なぜδをさらに小さくすると、青線のような不等式が成り立つのですか? ②どの部分の不等式を変形したら赤線の不等式が出てくるのですか? ③赤線の不等式が成り立つときなぜ定理が証... 続きを読む

定理4.6 f(x),g(x) が (a,b) 上の微分可能な関数で lim f(x) = lim_g(x) =+∞ エロ+ f'(エ) をみたしているとする。 このとき 極限 lim = = A が存在するならば x+a+ g'(x) f(x) lim == A za+ g(x) が成り立つ。なおこの定理は lim の部分をすべて lim あるいは lim, +α14 lim におきかえても成立する. b- 8 ◆証明 任意の0<<1に対して,あるδ0が存在し,a<x<a+δに対して f'(x) A-< <A+EAKE g'(x) が成り立つ。必要なら80をさらに小さくとって,f(x)>0,g(z) >O(a<x< a+δ) となるようにできる。 コーシーの平均値定理から, a<x<a +δに対して,あ ∈ (+8)が存在し, f(x)-f(a+8) f'(g) = g(x) − g(a+8) g'(§) が成り立つ。ゆえに A-ε< f(x)-f(a+8) である. したがって f(x) = + g(x) g(x) である. ここで 9(x) − g(a+6) = 1 g(x) g(a+6) (エ) f(a+8) →1 (x → a+), g(x) − g(a + 8) f(x)-f(a+δ)g(x)-g(a+8) f(a+8) 9(x) g(x) − g(a+8) <A+e 価 以 grat (エ) 0(土)であるから,必要ならばさらにを小さくとることにより1> g(z)-g(a+6) f(a +8) g(x) >1-ɛ, 0< <e としてよい。ゆえに g(x) f(x) (A+c) +g> >(A-) (1-e)=A-e(A+1-c) g(x) が成り立つ。よって定理が証明された, 残りの主張も同様の議論で証明できる.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

明日までの課題でわからなくて、困ってます😰

問題 以下の問に答えなさい。 問1 以下の方程式について考える。 logy=5+0.2æ logは自然対数を表す。このとき、以下の空欄に、 半角で、もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1単位増加するとき、yは | パーセント増加する。 問2 以下の方程式について考える。 y=5+200loge logは自然対数を表す。 このとき、以下の空欄に、 半角で、もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1パーセント増加するとき、yは 問3 以下の方程式について考える。 単位増加する。 logy = 8+2logæ logは自然対数を表す。 このとき、 以下の空欄に、 半角で、 もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1パーセント増加するとき、 yは 問4 以下の方程式について考える。 パーセント増加する。 y = 6+1000logæ logは自然対数を表す。このとき、以下の空欄に、 半角で、もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1パーセント増加するとき、 yは 問5 以下の方程式について考える。 単位増加数。 logy =3+0.05æ logは自然対数を表す。 このとき、 以下の空欄に、 半角で、 もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1単位増加するとき、 yは パーセント増加する。 問6 以下の方程式について考える。 logy=5+20loga logは自然対数を表す。 このとき、以下の空欄に、 半角で、もっとも適切な算用数字を入力しなさ い。 また、 小数点が必要な場合も半角で入力しなさい。 xが1パーセント増加するとき、yは パーセント増加する。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)について どうゆう手順でとき進めて行くんですか? また、なぜδは最小の値をとるんですか? 図とか想像出来ていないので教えて欲しいです。

48第2章 関数 (1変数) 基本 例題 030 E-8 論法による等式の証明 次の等式をE-8論法を用いて証明せよ。 (1) lim (5x-3)=2 (2) lim (x2+1)=2 x-1 1 基本 指針 (1) とも, 左辺の極限値は存在して, 右辺と一致することは,すぐにわかる。 そのこい E-8論法を用いて証明せよとあるから、関数の収束の定義を今一度確認しておこう。 定義関数の極限 (E-8論法 ) 任意の正の実数に対して、 ある正の実数8 が存在して、f(x)の定義域内の 0<x-a|<8であるすべてのxについて|f(x)-α|<e となるとき、関数f(x)は 12203054 [oclx-alk8 Hon-alc x→αでαに収束するという。 ⇒ (1)証明すべきことは、「任意の正の実数に対して、ある正の実数が存在して 0<|x-1|<8 であるすべてのxについて (5x-3)-2|< が成り立つ。」である。 基本 例題 031 €18 下の指針の定理について, (1) 下の関数の極限の (2) 下の, 合成関数の極 (5x-3)-2|=5|x-1|により, | x-1 <8ならば5|x-1|<5δ であることを利用すれば、 い。 (2)証明すべきことは、 「任意の正の実数に対して、 ある正の実数δが存在して 0<x+1|<8 であるすべてのxについて | (x2+1)-2|<e が成り立つ。」 である。 |(x+1)-2|=|(x+1)(x-1)|=|x+1||x-1|である。 x-1 であるから,xが-1に い状況のみを考えればよく、例えばx+1|<1 すなわち-2<x<0であればx-1|<37 ある。 299- 指針定理 関数の極限の性質 関数f(x), g(x) お したがってδを1より小さくとるとき,x+1| <δであれば | x+1| <1であり、このとき |x2+1-2|=|x+1||x-1|<3|x+1| <38 となる。 これを利用すればよい。 [CH|A|R|T-8 論法が先,8が後 解答 (1) 任意の正の実数e に対して, 8= m とする。 d= 5 このとき,0<|x-1|<8=1であるすべてのxに対して 与式のxに1を代入す れば極限値が2である ことはすぐにわかる。 |(5x-3)-2|=5|x-1|<58=e よって lim (5x-3)=2 (2) 任意の正の実数』に対して,=min {1, 2} とする。 このとき, 0<|x+1|<8であるすべてのxについて、 |x+1|<1であるから x→1 |x-1|=|(x+1)-2|≦|x+1|+2<1+2=3 また,x+1|< であるから |(x2+1)-2|=|x+1||x-1|<13×3=e よって lim (x2+1)=2 X-1 指針にある通り後の 計算を見越して,ô= としている。 < (1) と同様に,等式の極 限値が2であることは すぐにわかる。 三角不等式。 [1] lim {kf(x)+ x-a [2] limf(x)g(2 xa 定理 合成関数の極 関数f(x), g(x) このとき,合成関委 E-δ論法による証 対応する の値を (1) f(x) g(x) の極限 る。 関数の値 える。 (2) 合成関数 f(a) に近づ 解答 (1) 性質 [2] を任意の limf(x)= x-a 0<\x-a 成り立つ ここで, c0 から limf( x-a 48は1との大きく ない方をとればよい。 更に、指針にある通り、 後の計算を見越して 8=1としている。 0<\x が成 lim x-a

未解決 回答数: 1
数学 大学生・専門学校生・社会人

(3)について (1)より、のあとどっから出てきた値ですか? どう出てきたか分からないので教えて欲しいです。 また、どうやって赤色の式を立式したのか。 立式後の計算過程はわかるのですが、 最後の1文の式も理解出来ません。 多いですが全て教えて欲しいです。

政宗 3 単調 基本 例題 019 有界で単調減少する数列の極限 次の条件で定められる数列{an} について,以下のことを示せ。 ★★ [基本 a>2 この 1 a=2, an+1= an an 2) =(a+) (n=1, 2, 3, ....) (1) すべてのnについて an≧2 (2)数列{az} は単調に減少する。 指針 (3) 数列{a} は √2 に収束する。 指針 この漸化式はニュートン法(p.96 参照) によって構成され, 近似値 2 を与える計算方法 1つである。 (1)帰納的にa>0であるから,相加平均≧相乗平均の関係を利用する。 (3) はさみうちの原理を利用して, lim an-√21=0 を示す。 12100 解答 (1) α=2>0 であり,漸化式の形から,すべての自然数nについてan>0である。 よって,相加平均と相乗平均の関係から,任意の自然数nについて 11 = 1/2 (an + 2 ) 2 1 1 · 2 √an · 2 =√2 an+1=- an an =2√2 であるから,すべてのnについて 全体 > 「or an≧√2 ord -ano (2) 任意の自然数nについて anz anti-an= 2 = (a + 2) - 2-an -an= 両認して、 2 2an (1)より, an≧√2 であるから an = 2 2. an²≤0 ゆえに 2-an≤0 anti-an 解答 よって, an+1≦an であるから, 数列{az} は単調に減少する。■ (3) 与えられた漸化式により an-√2 より 2an an+1 1 an2-2√2 an+2(an-√2)2 S an 2an 2-12 であるから 2an √2 = 1½ (an - √2) 0≤an-√2 ≤ (1) (a-√2) よって lim (1) (-√2)=0であるから 1\n-1 2an an-√2 antl 20n -(an-√2) F=/(an-2) a) - 2 ½ £ (an-√=)) ant-2FanF liman=√2 818 an an 089-2 osan- 2 参考 lin n- 0500-12

未解決 回答数: 1