学年

教科

質問の種類

数学 大学生・専門学校生・社会人

一次関数応用です! 第4問の4がわかりません!解説お願いします🙇

2 d 1日)たかしさんとけんとさんは、学校から公園まで一直線の道をランニングすることにしまし 第 に。午前9時にたかしさんが先に学校を出発し、 その6分後にけんとさんも学校を出発しました。 たかしさんは,途中までは一定の速さでランニングし続けていましたが, ある地点からはランニング の,それまでの半分の速さで公園まで歩き続けました。けんとさんは, ランニングの途中に1回だ リトち止まって休憩し, 再び、休憩する前と同じ速さで公園までランニングし続けました。午前9時45 分に2人は同時に公園に到着しました。 14 トの図は,たかしさんが学校を出発してからx分後の, 2人の間の距離をymとして, xとyの関係 をグラフに表したものです。 あとの1~4の問いに答えなさい。 y (m) 096 98 23 13 20 23 45 x (分) 0 9 98 けんとさんは, 学校を出発してから公園に到着するまでに, 何分間ランニングをしていましたか。 学校から公園までの距離は何mですか。 3 けんとさんが休憩しているときのyをxの式で表しなさい。 2人の間の距離が1000mとなるときが全部で2回あります。2回目は1回目から何分後ですか。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

右の欄の下の方のとこの項数のとこに2のnー1乗ってあるんですけどそれってどうやってわかるんですか? これって2nー1とかじゃダメなんですか? よろしくお願いします

井安 元気フ 難易度 CHECK 1| CHECK2 CHECK3 元気カアップ問題 127 次の連 3 と与えられている。 1 1 8 3 8 5 8 7 16'16 1 13 数列{a.}が, 2'4'4'8 m ;のとき, m の値を求めよ。また Sm= E a, を求めよ。 128 (2) a 1 am= n=1 ヒント ヒント!)これは, 分母2',2?, 2*, …によって, 群数列に分けて考えるとうま。 いくんだね。 n22 ココがポイント 解答&解説 解き 数列 {a,}を次のように群に分けて考える。(第7群の初項) ==は、第7郡 11 a1 a2, a3 a4, as, a6, ay A8,…… Am,… 128 の初項だね。よって, mは 第6群までの各群の項数の 和に1をたしたものだね。 ne 1 1 3 1 3 5 7 1 2 2? 22|| 2 2 2° 2° 24 27 第 第 1 2 群 群 (2項) 第 (1項) (4=2°項) 群 (8=2°項) 群 (2°項) 11 ここで, am= 1 は, 第7群の初項なので, 2 (最初の数 128 20 (最後の数 m=1+2+2?+…+2°+1=63+1=64 (答)」←1+2+2?+…+2は 初項a=1, 公比r=2, 項数n=6(=5-0+1) (2) a 1-(1-2) 1-2 第6群までの各群の項数の和 =2°-1=64-1=63 (最後の数)(最初の数 次に,第1群の数列の和をT, とおくと, の等比数列の和だね。 T,= 1 3 2"-1 11 {1+3+5+…+(2"-1)}←1+3+5+……+(2"-1) は, 2" 2" 2" 2" 初項1,末項2"-1, 項数 2"-1の等差数列の 和より, こ 27-1 項 2 2 n-1 1 :X 2" -=2"-2 となる。 (末項 ミ 項数 初項 2 - 品 S.=2.-2T. 6 6 2 a, =X T,+as4= 11 2 22"-2+ n=1 n=1 128 第6群までの数列の和)(第7群の初項 am=asa) n=1 T,=22" 63 n=1 n=1 11 63×64+1 4033 128 (答) 2(1-2) 63 128 128 1-2 2 a=2", r=2, n=6の 等比数列の和 196 リ

回答募集中 回答数: 0