学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この時もインフルエンザで休んでてわからないんです。お願いいたします。

1 赤玉3個、 白玉2個が入っている袋の中から、1 個の玉を取り出すとさき、 次の確率を求めなさい。 (1 ) 赤玉である確率 (2 0 点) (2 ) 白玉である確率(2 0 点) 2 1枚の5円重任を2回投げるとき、次の問いに答えなさい。 (1 ) 重任の表、裏の出方について、右の樹形図を完成させな さい。 (20刺) (2) 表と裏が 1回ずつ出る確率を求めなさい。(2 0 県) 3 太郎者は、ノートパソコンと CD ラジカセのどちらを買うか迷っていました。そんな時、以下のよう なデパートの広告を見つけました。 太郎君は2等か 3等いずれかを当てることをねらい ました。 太郎君は残り物には福があると思い、 6 日 (日) ドに行くことにしました。 太郎君は、2 日目見事先着 5 0 名の中に入り, 整理券をもらいました。 しかし、1等は 残り 1本、2等は残り 1本、3等は残り 1本となってい ました。 今回の場合、 日曜日の抽選を選んだ太郎君は、ねらっ たくじを当てる確率が高くなったと言えるでしょうか。 式や言葉を使って説明しましょう。(2 0 点) 小さな幸せチャンス Days はWhくじなし 提 午10生 くじ1 50ネのからNさなWせをつひ6う1 1科 wNCD5く05半 1本 29 ノーロウコン 3本 3 CDラジカセ 5本 本 ウェットテッシュ10入り ケス1条 141本 球 SB G) 先100骨6 (G) 先50和人 人

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

最初の2枚の定理等により三枚目の部分分数分解が証明できると思うのですが、赤い線以外の項が出てくることがよく分からないです。 赤い項が出てくるのは因数分解できているからなのですが、それ以外についてがよく分からないです。 B₁=x-a、B₂=(その他)として繰り返すにしても... 続きを読む

定理1 整式 4(7)、 (r) が deg.4 < deg (deg /(z) は、整式 /(ヶ) の次数を意味する) のとき、が(ァ) = 7)用(r) で整式 (7)。 (7) がないに素ならば、 ・ dog <deg deg <deg放| となるような整式 (3) (7) が、ただ 1 組存在する。 系2 問式 4(Z), 2(r) がdeg.4 <degおのとき、 (7) = 放(y)記(2) … (7) で、束式 太G) 記(7) Br) がどの 2 つも石いに素ならば、 dmも<dem訪7ニ12.…7) EE ぢ 記あ…お。 お 邦 となるような整式 (7)、 (7) 4。(z) が、ただ 1 組存在する。 2 旭除法 2 なお、2 つの贅式7?) 9(r) が 万いに素 であるとは、1 次以上の共通因子 (7(z), 9(z) の両方 を割り切る束式) が存在しないことを意味する。 講義では、証明なしでこの定理を紹介しているだけだったので、ここにその証明を簡単にまと めておくこととする。 なお、以下は実数係数の束式 (多項式) を考え とするが、有理数係数の整式に限定しても、 あるいは複数係数の革式に広げても同じ論法が使える。

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

二枚目の赤いラインの部分がよくわからないです。 前半部分、後半部分、共に式で説明してほしいです。 加えて、写真の枚数制限により付け加えられませんでしたが、別の証明との違いというか、この証明のように全てのパターンに対応しているのかについて教えて欲しいです。 おそらく画像は... 続きを読む

3定理のパリェーション 3 3 定理のバリエーション ロビタルの定理 1 には、 色んな細かいバリエーションがある。 それをこの節で紹介する まずは、定理1 の条件 1 のcと区間に関するもので、/をリーニ[a.の、またはリー(c紀 として、二限を hm 、または hmm の上凍限たするペリエーションがある。 きらに、q= co、またはョニーo とし、7はリー(K、so)、またはブー (ciK) の ような半無限区間とし、の条件 3 を jmm 7(z) = Hm 、 または Hm 7 _Him_9<) = 0 とし、血限を jmm 、または hm とするバリエーションがある。 れらに対しても、ロビタルの定理の結果はそのまま成り立つこ のようなょの収束先 (c) の変更が 5 通りある。 が知られているが また、不定肥が 1 でなく の場合のパリエーションもある。つまり、条件3 を 由 Bm gc などとした場合であるが、この場合もロビタルの 定理が成立することが知られているが、この任限の oc は ac に置き換えることもで きるので、それだけで 』 通りあり、上と同様の r の取束先の変更も考えるとそれがそ れぞれ 4 通りある (この場合は lin は考えず、通当片側税限を扱う) ので、全部で 16 通りあることになる。 でで21 通りのバリエーションがある なるが、さらに、(1) の 8が、有限 な値ではなく、oo か oo の場合でも定理が成り立つことが知られている。すなわち、 「太ニーo ならば 。 も oo となる」といった形である。よって、これらを上の 21 通りすべてに適用すれば、合計で G3 通りのバリエーションがあることになる。 もう 一度、分類を昧理してみる。すべてのパターンを (ヵ.4.7) のような記号で表現す る。各成分の意味は以下の通り。 ・の は、テの取束先に関するペリエー 通り ョン。 4(有際).g+0.40. oe oo の5 <9 は、 珍がる か かのバリェーション。 070.e/r ae/or eo/(ー) (-c)/(-c) の 5 通り (通常は、後者 4つをまとめて と呼ぶり。 ・7 はおに関するバリエーション。8 (有限).cc. -o の3通り。 の場合は、通常ヵニを外して考えるので、全部で5x5x3-4xlx3 =

解決済み 回答数: 1