学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(2)で、なぜ9+3になるのかが分かりません。教えてくださいよろしくお願いします

●7 重複組合せ A,B,C,D の4種類の缶詰を合わせて9個買うとき, (1) それぞれの缶詰を少なくとも1個は買う場合,買い方は何通りあるか. (2) 買わない缶詰の種類があってもよい場合, 買い方は何通りあるか. 種類ごとにまとめて並べる ← (産業能率大) 理するとしたら、多くの人が「左から A,B,C,D の順に、同じ種類の缶詰をまとめて並べる」とする 同じ買い方か違う買い方かが一目でわかるように(買った缶詰を)整 のではないか.例えば,Aを3個, Bを4個 Cを1個,Dを1個ならAAABBBBCDとなる.そして, この文字列は, AとBの境,BとCの境, C とDの境が決まれば決まる (復元できる). 000100001010 つまり右のように A~Dを〇境を仕切りで表せば,9個の○と3個のの並びと対応する. (1)は,仕切りが両端にはなく,かつ隣り合わない。 (2) は並び順は自由である.このような○と の並べ方の総数を求める. 解答圜 (1) ○を9個並べておき,○の間 (図の1)8か所 から異なる3か所を選んで仕切りを入れる. 仕切り で区切られた 4か所の○の個数を左から順に A, B, C,D の個数とすると,どの場所にも○は1個以上あ るので題意の買い方と対応する. よって, 求める場合 AAABBBBCD ↑↑↑ |0|000 A B C D 8・7・6 3.2 =56(通り) の数は仕切りの位置の選び方と同じで, 8C3= (2) ○を9個, を3個, 横一列に自由に並べ、 個数 (○がないところは0個) を左から順に A, B, C, D の個数とする. この並べ方と題意の買い方は 対応するから,求める場合の数は, 9+3C3= 9+3つ で区切られた4か所の○の 000||000000 A B C D 12-11-10 =220 (通り) 3・2 ■(2)で,各缶詰を1個ずつ余分に買うとすると, 合わせて13個, 各1個以上な ので (1) と同様にできる (式も 12C3となる). 逆に (1) を各缶詰を1個ずつ減ら して(2)のように解いてもよい。 □Aをx個, Bをy個, Cを2個, Dをw個買うとすると, x+y+z+w=9で, (1)はxwが1以上, (2) は x~w が0以上である. このような~w の組の 個数を求めたことになる. p.25のミニ講座も参照. 買い方を決めれば仕切りの位置 が決まる。仕切りの位置が違え ば違う買い方と対応する。 07 演習題(解答は p.21) 2008 は,各位の数字の和が10になる4桁の自然数である。 (実際に2008 の各位の数字 の和は2+0+0+8=10である.) このように, 各位の数字の和が10になる4桁の自然数 は全部で 個ある. x+y+z+w=10だが

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

わからないです。 教えてください🙇‍♀️

現学 課題内容 日本人で,毛髪の本数も誕生月日 (○○月 ◇◆日) も性別 (男or女) も全く同じである人 が少なくとも2人いる.このことが成立している ことを以下に, 「鳩の巣原理」を適用して説明 しています。 a, b, cに当てはまる正の整数を,dは「大き 「い数」か 「小さい数」 のいずれかの語句を答え 尚, 解答の回答には, 」の入力は不要 です (配点:a2点,b2点, c3点, d3点) 人の毛髪は平均で10,000 (十万) 本と言わ れていて、多くても15,000 (十五万) 本らし いですよって,考えられる毛髪の本数は0本~ 15,0000本の全 a通りです. 誕生月日については、閏年の2月29日生まれ の方がおられることを考慮すると、 考えられる 誕生月日は、全部でb通りあります。 よって、考えられる (毛髪の本数, 誕生月 日,性別)の相異なる組は, 全部でc通りにな ります これを 「鳩の巣」 と考えます. 一方, 「鳩」を日本人と考えると, 日本の人 口約1,2000,0000 (1億2千万)人と少なく見 積もっても、この数は上で求めた「鳩の巣」の 個数 cよりはdなので, 「鳩の巣原理」によ り,日本人で毛髪の本数も誕生月日 (○○月 ◇◇日) も性別も全く同じ2人が必ずいることが 解りました. 添付ファイルは ありません

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

五番の問題が分からなかったので解説お願いします🙏

予想問題 □⑤A, B, C3組の夫婦6人が旅行先でゴルフ大会を開き, 勝した。 前日 当日 当夜の状況は次の通りである。が (ア) 優勝者の配偶者は,当夜トランプをして負けた。 (イ) A氏は,前日気分がすぐれずずっと寝ていた。 +0 (ウ)B氏は, C夫人に当日初めて会った。1-30+3+A (エ)B夫人は,1人の夫人と当夜ずっとおしゃべりをしていた。 (オ)B氏は,前日テニスをして優勝者に勝った。 (カ)A夫妻は当夜トランプに参加し, A氏が勝った。 O+A 上の状況から判断して、優勝者は誰か。 (2) A夫人 (4) C氏 (5) C夫人 □⑥ 全く同じ型の4戸ずつのアパー (1) A氏 54500-030 528st=5+8 OLDTØTSTD (3) B*X+0+0+8+A ** 0-A 1030, 0-0381X3E=ADIO 解説と解答 3組の夫婦6人を A, a, B, b, C,cで表す。 5 Point A夫妻をA, a, B夫妻をB, b, C夫妻をC,cで表す。 ただし,小 文字は夫人を示す。 また、優勝者をW, その配偶者をwで表す。 (オ)より, BWとなる。 (ア) (カ)より, A≠wとなり, a≠Wとなる。 (イ)と (ウ) (ア)と 11 A≠Wとなる。よって, a≠w。 (オ)より, (オ)より, c≠Wとなり, C≠wとなる。 はcとなり, c≠w, C≠ n (エ)より、「1人の夫人」 となる。 以上より、残るのはB夫人だけとなり, B夫人が優勝者とわかる。 (3)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

五番の問題がわからないです。教えて欲しいです!よろしくお願いします^_^

予想問題 ] ⑤A, B, C3 組の夫婦6人が旅行先でゴルフ大会を開き 勝した。前日,当日,当夜の状況は次の通りである。 あ (ア)優勝者の配偶者は,当夜トランプをして負けた。 (イ)A氏は,前日気分がすぐれずずっと寝ていた。 +0+ (ウ)B氏は,C夫人に当日初めて会った。 3+0+ta (エ)B夫人は,1人の夫人と当夜ずっとおしゃべりをしていた。 (オ)B氏は,前日テニスをして優勝者に勝った。 ヨナ (カ)A夫妻は当夜トランプに参加し, A氏が勝った。 Q+A 4530030 上の状況から判断して、優勝者は誰か。 031-0+日 -A)S ,U10+0+0+0+0 (3) B*X+0+0+8+A ** (1) A氏 (4) C氏 (2) A夫人 (5) C夫人 口 ⑥ 全く同じ型の4戸ずつのアパートが図のように3棟並んで建ってい 8-0.58TAME=A る。ここに住んでいるA~Dの4人はおのおの次のように発言して いる。 A「私の家は棟のはしではなく,すぐ 南側の棟にBさんの家があります」 B「私の家は棟のはしで、1軒おいて 東側にCさんの家があります」 C 「Aさんの家とDさんの家とを結ん だ直線上に、 私の家があります」 D 「私の家の1軒おいて真北にEさんの家があります」 1 (1) Aの家は2である。 (2) Bの家は8である。 (3) Bの家は9である。 (4) D 5 以上のことから確実にいえるのは,次のうちどれか。 2 北 6 7 8 9 10 11 12 3 4 3組の夫婦6人を A, a, B, b, C,cで表す。 5 Point A夫妻をA, a, B夫妻をB, b, C夫妻をC,cで表す。 ただし 小 文字は夫人を示す。また, 優勝者をW, その配偶者をwで表す。 (オ)より, BWとなる。 (ア) (カ)より, A≠wとなり, a≠Wとなる。 (イ)と (ウ)と (ア)と(エ)より、 「1人の夫人」はc となり, c≠w,CW となる。 -10 (40) 以上より,残るのはB夫人だけとなり, B夫人が優勝者とわかる。 B SA AI ⑥ Point 確定した位置関係をもとに他の条件を加える。 Bの発言から、BとCの位置関係は次のようになる。 B A≠Wとなる。 よって, a≠w。 (オ)より, c≠Wとなり, C≠wとなる。 (オ)より, A 解説と解答・ C これに,A,C,Dの発言を加えると,4者の位置関係は次のよう になる。 北 C E (3) D

回答募集中 回答数: 0
1/3