学年

教科

質問の種類

物理 高校生

問1の初速度ははなぜ-1/2mv^2=-mgLで求められないのですか?

扱う テーマ 放物運動と座標軸のとり方/軸上での式の取扱い p.31 物理 図のように,点Aから投げられたボールが, 水平面上の距離Lの点Bに垂直に立て られた高さLのネットをちょうど越えて,距離2Lはなれた点Cに落下し, さらに前 七の斜面を何回かはね(バウンドし), やがて点Cに戻ってくる状況を考えよう。ここ る斜面は十分に長く,その傾きは0であり, 水平面および斜面はなめらかで, ボール と面とのはね返り係数(反発係数)ば e(0<e<1)である。ボールの大きさ,ボールの 同転、およびボールに対する空気抵抗は無視し,重力加速度の大きさをgとして以下 の開いに答えよ。なお, θとeはボールが斜面上を1回以上はねることのできる条件 を満たしているものとする。 V。 y Vo luo A B C し L L 問1 点Aでのボールの初速度 V。を g, Lを用いて表せ。 * 問2 ボールは点Cのわずかに左側の水平面でバウンドした。 図のように, 点Cを原 点として斜面に平行にz軸, 斜面に垂直にy軸をとったとき, バウンド直後のボー ルの速度のr成分 Uo, y 成分 voを g, L, e, 0を用いて表せ。 ボールが点Cではね上がった時刻を t=0 として, 1回目に斜面上でバウンド するまでの間の任意の時刻tにおける速度のェ成分u, y成分v, および位置エ, y を表す式を uo, Vo, g, θ, t を用いて表せ。また, 1回目にバウンドする時刻もをg, L, e, 0を用いて表せ。 * 問4 斜面上でボールが繰り返しはねた。n回目(n21)にバウンドする時刻を g, L, e, 0, n を用いて表せ。また, バウンドがおさまる時刻t。を g, L, e, 0を用い て表せ。 会0 Mm ケ突 さ突 ★* 問5 ボールはやがて点Cに戻ってくるが,点Cを点Bに向かって通過するとき,バ ウンドしていない条件を e, 0を用いて表すと, 2tan0.e?+e-(1+tan°0)<0 となることを示せ。 ご交面が J奥園 * 問3 食 M 「東大(改)|

回答募集中 回答数: 0
物理 高校生

64<シリンダー内のピストンの運動> ⑶が定圧変化になる理由を教えてください🙏

2L回衝突するの 間 At の間に壁面Aの受ける力積は 2mu,x "At _ mu;At (N.o 0| 48 9気体分子の運動と状態変化 外で空気の圧力は等しい。 次に, 球体内の空気をゆっくり加熱して, 空気の温度をアに る。このとき球体内の空気の密度はpであった。 (2) pをTo, Po, Tを用いて表せ。 空気を除いた気球にはたらく重力の大きさは, 重力加速度の大きさをg[m/s"] とまっ と,Mg[N] である。また, 球体内の空気の温度がTのとき, 空気の質量はpV[kg〕 で去 る。球体内の空気にはたらく重力の大きさは, V, To, Po, T, gを用いてオ]xg[N) と表すことができる。 よって, 空気を含む気球にはたらく重力の大きさF[N] は, F=(M+())×g で与えられる。一方, 空気中に置かれた球体は, 球体外のまわりの空気 から鉛直上向きに押し上げる力, すなわち, 浮力を受ける。 簡単のため, 球体外のまわり の空気の密度をPo とすると, その浮力の大きさf[N] は球体内の空気と同じ体積をもっ 球体外の空気にはたらく重力と同じ大きさで, f= カ]×g で与えられる。いま, Tが Fと子の一致する温度 T,[K] をこえると,気球が上昇し始めた。 (3) 横軸に球体内の空気の温度 T, 縦軸にFをとって, グラフの概形をかけ。 (4) 球体内の空気の温度に対するFと子の関係から, 気球が浮上する理由を説明せよ。 (5)気球が浮上を始める温度 T, を1V, M, To, poを用いて表せ。 [16 大阪工大) 必幅64. 〈シリンダー内のピストンの運動〉 図のように,断面積S[m°] の十分長いシリンダーが鉛直に置かれて いる。シリンダー上部には質量を無視できるピストンがはめこまれ, シリンダー内部に理想気体が封入されている。 ピストンは断熱材で作ら れており, 気密を保ちながらなめらかに上下に動くものとする。シリン ダーは断熱材でおおわれており, 断熱材は取り外しできるものとする。 初期状態ではピストンは静止しており, ピストンの底部はシリンダーの 底から高さ ho [m] の位置にあり, シリンダー内部に封入された理想気体の温度は To[K], 圧力は Po[N/m°] であるとする。このとき, 次の問いに答えよ。 なお, シリンダー外部の大 気の温度を To[K], その圧力を Po[N/m°], 重力加速度の大きさをg [m/s°] とする。 (1)ピストンの上部に質量 M[kg] のおもりをゆっくりのせたところ, ピストンの底部がシリ ンダーの底から高さh、[m] の位置に下がった状態で静止した。 この状態における理想気 体の温度 T. [K]を To, Po, ho, h, M, S, gを用いて表せ。 (2) T, と Toの大小関係で正しいものを次のうちから1つ選び, 選択理由を20字程度で記せ。 (a) T;> To (3) 次に, シリンダーの側面の断熱材を取り外したところ, やがて, シリンダー内部に封入さ れた理想気体の温度は To[K] になり, ピストンの底部はシリンダーの底から h2[m] の位 置に変化した。h2を Po, ho, M, S, gを用いて表せ。 (4) h2と h,の大小関係で正しいものを次のうちから1つ選べ。 シリンダー ピストン ho[m] (b) T;=To (c) T;< To (d) 与えられた条件からは判断できない (a) h2>h. (b) h2=h」 (c) h2くh」 (d) 与えられた条件からは判断できない (5) 続いて, シリンダーの側面に断熱材を再び取りつけ, ビストンの上部のおもりをゆっくり 取り去ったところ, ビストンの底部はシリンダーの底から高さ hs[m] の位置で静止した。 この状態での理想気体の温度をT. [K] として, hsを ho, To, Ts を用いて表せ。 [千葉大] 断熱材

回答募集中 回答数: 0
物理 高校生

最後になお、のところで自分なりにしてみたのですが、答えがあっておらず、、、教えてください ノートの向きよこになってしまい、見にくいかもしれないです。すみません!

EX1 長さ1の棒の両端に質量 m, 質点が取り付けられている。 棒を糸でつるし て水平に保つには図のxをいくらにすればよ いか。(1)棒が軽い場合と (2)棒の質量が m の場合について答えよ。カの トク このように未知でしかも求める必要のない力(この場合は張かの 糸 A 解床 x. B とき m M 点で 左向 上 A 解 (1) 二軽い”は質量が無視できることを表す。 支 える点0のまわりのモーメントのつり合いよ り(張力Tのモーメントは0) T! A dーxB 0 mg×x=Mg×(1-x) こ mg 図1 1- m+M M Mgt X= 製Eトク このように未知でしかも求める必要のない方カ(この場合は張か。 モーメントが0になるように軸を選ぶとよい。 鶏のモーメントは下向きしかない から回転不可能 =モーメント0 I D m+M° (2) 棒の重力は重心つまり中点Gに働く。点0の まわりのモーメントのつり合いより T )-Mg(Iーズ) mgx + mg|x- x. 1-x GO X= m+2M 2 mg mg 2(2m+ M) なお,答えは mと Mの大小関係にはよらない。 もし,0がGの左側にあるとしても同じ答えと なることを確かめてみるとよい。tのち向 Mg 棒の重力 図2 不 %3D豚)

回答募集中 回答数: 0
物理 高校生

106(オ)がわからないです

(2)図の最初の状態にもどる。すなわち,各スイッチは開いており、 (4)各コンデンサーの耐電圧(耐えられる電圧の限界)がすべて 45Vであるとき,合成コンデ C, Dの電位はそれぞれ Va=V(V), Va=Dオコ×V[V). [V/m]である。導体板 A, B, C, D間に蓄積されている静電エ 図1のように、十分に広い面積Sをもった平行板コンデンサーにおいて, 左側の極板Aは この状態でスイッチ S.のみを閉じた。このとき, 専体板A, B, どの導体板にも電荷は蓄えられていない。次の2つの操作後の結果を比較しよう。 d(m)、2d (m), 3d[m) とする。ここで, dは導体板の辺の長さ aと比較して十分小さいと する。国中のS,Sa. Siはスイッチを表している。 電源Vは電圧「V[V) の直流電源であり。 操作a):スイッチ S」を閉じ,しばらくしてスイッチ S,を開く。 それからスイッチS.を る文章を解答群から選べ。ただし、 数式は C, V、 dのうち必要なものを用いて答えよ。 2つの導体板 A, Bを平行板コンデンサーとみなしたときの電気容量を CIF) とする。 導体板Dは電源の負極とともに接地されている(接地点の電位を基準V とする。 また。 84 コンデンサー 85 標準間■ A つり最初の状態ではどの事体数にも電荷は書えられていたい。 °104.(コンデンサーの合成容量) 6.0Vの直流電源Eと,電気容量がそれぞれ 3.0μF, 1.5μF, 2,0μF, 2.0μFの4つのコンデンサー Ci, Ca, Cs, C4を図のように 接続し、十分に時間を経過させた。各コンデンサーは,接続する前 は電荷をもっていなかったものとして,次の問いに答えよ。 (1) 4つのコンデンサーの合成容量 C [uF] を求めよ。 (2)各コンデンサーに加わる電圧 Vi. Vz, Vs, Va [V), および蓄えら れた電気量Q,Q, Q, Q [C] を求めよ。 (3) 各コンデンサーに蓄えられた静電エネルギーの合計び [J] を求めよ。 C C。 S」 し ×V (VJ, Vo=UV である。導体板BとCの向かい合 C。 れらの間の空間に発生する電場は図で右向き, その強きは AB C E ネルギーの合計はオ|×CV2[J] である。 通体所の間属は拡大して かいてある ンサーとしての耐電圧 Vimax (V] を求めよ。 105.(ばね付きコンデンサー) (10 群馬大) 閉じる。 固定されているが、右側の極板Bは壁に固定されているばね (ばね定数k)につながカて。 て、Aに平行なまま動くことができる。極板が帯電していないとき, ばねは自然の長さのい 態にあり,極板間の距離はdであった。次に,図2のように,極板Aに正, 極板Bに自の筆 荷を徐々に帯電させるとばねは徐々に伸び,最終的に極板Aに +Q, 極板Bに -Qの雷益た 帯電させたところ, ばねの伸びが 4d (Ad <d), 極板問距離がd-ddとなったところでつり あった。真空の誘電率を Eo, 空気の比誘電率を1とする。また, ばねおよび壁の帯電, 重力 の影響はないものとする。次の問いに答えよ。ただし, (2)~~(5)は, Eo, d, k, Q, Sの中から 必要なものを用いて解答せよ。 (1) 電気力線のようすを図3に矢印で表せ。 極板間の電場の強さEを求めよ。 極板Bにはたらく電気的な力Fを求めよ。 (4) dd を求めよ。 (5) 極板間の電位差Vを求めよ。 ここで、極板Bを固定し、極板Aに +Q. 極板Bに -Qの電荷 を帯電させたまま、極板間に、比誘電率2の誘電体を図4のよう にゆっくりと差しこんだ。 6 このときの電気力線のようすを図4に矢印で表せ。 (7) Bにはたらく電気的な力は,(3)と比べてどうなるか。 を開く。 初めに操作(a)による結果を考察する。操作終了後,導体板CとDの間の電場の強さは 一カ(V/m] であり,導体板Aの電位は Via=Lキ ×V(V) である。このとき、毒体 新間全体に蓄積された静電エネルギーは,(1)のエネルギーの値オ×CV?[J) の ク]番 である。 一方,操作(b)の場合, 操作終了後に導体板AとBの同に発生する電場の強さはケ (V/m] であり, 導体板Aに蓄えられた電気量は Q=D■コ C) である。 また、事体板 A Bの電位はそれぞれ VAb= サ×1/[V), Vias=■シ×1/(V) となる。この場合、毒 体板間全体に蓄積された静電エネルギーは, (1)のエネルギーの値閉×CV*(J]の ス] 倍である。 したがって、2つの操作後の結果を比較すると次のようなことがわかる。 スイッチS。 を閉じると導体板 B, C間に発生していた電場が消失するので, スイッチを開じた直後。 その分の静電エネルギーが減少する。このとき、 セ」ということがいえる。 (2)の(b)の操作後,しばらくしてスイッチS:を開き、それからスイッチS,を開じた。この とき,導体板Cの電位は V%=[ ソ×1/[V] で, 導体板BとDに蓄えられている電気量 (絶対値)はそれぞれタ×0,[C). 「 チ]×Q&(C) となる。ここで、 &はこのコ(C である。 |セの解答群 3- d-dd- B A B otinl Foom P00000 +Q-91 図1 図2 -Q +Q 図3 +Q *106.(4枚の導体板によるコンデンサー回路) (15 広島市大 改) 図4 (a), (b)で等しくなる 間の静電エネルギーに加算される (14 東京理大改) s」a 51

回答募集中 回答数: 0