学年

教科

質問の種類

数学 高校生

比例式 、サイクリックな式の本質は、 軌跡領域の逆像法でパラメータの存在条件を考える時と同じですか?

11 比例式, サイクリックな式 xy+yz+zx (ア) x+4y y+4z z+8エ 3 をみたす正の実数x, y, z について, 2+12+22 6 4 (椙山女学園大) である. I (イ) y Z y+z 2+1 このとき,この式の値は,x+y+z=0のとき x+y x+y+z=0 の (麻布大獣医) とき である. 比例式はとおく 条件式が ==形(ry:z=a:b:cを意味する比例式)で与えら abc れたときには、この分数式の値をkとおくのが定石で、こうすると計算にのせやすい。 サイクリックな式 (イ)の式の値をとおくと,r=k(y+z) などとなる.ここで, x,y,zをそれぞれy,z, xに入れ替えていくと, x=k(y+z) ⑦ y=k(z+x) ⇒ z=k(rty)..・・・・ウ となり,もう1回やると⑦⑦になる. このように,文字がグルグル回る, ア~⑦を サイクリックな式を言うが、この3式を辺ごとに加えると対称式になり,扱い易くなる. 解答 (ア) x+4y y+4z 2+8x 3 =k (k>0) とおくと, x, y, zが正により, k>0 6 4 x+4y=3k ①y+4z=6k... ②, z+8x=4k...... ③ ①によりェ=3k-4y で, これと③から z = 4k-8=32y-20k これを②に代入して, y+4(32y-20k)=6k 等式の条件は,文字を消去するの が原則 86 2 129 3 y= -k= ==k, I=3k-- 4 -k, z=4k- -k= -k 3 3 E そのままk=31 (1>0) とおいて,r=l, y=21,z=4l 大変 1-21+21-41+41.1 _2+8+4 14 2 よって, 求値式= = 2+(21)+(41) 2 1+4+16 21 23 I (イ) y 2 =k...... ① とおくと, y+z z+x x+y x=k(y+z) +42-6 2+8x-4f 1 k>o ②,y=k (z+x)...... ③, z=k(x+y)......④ ②+③ + ④により,x+y+z=2k(x+y+z) 1°x+y+z≠0のときは, これで割って,k= 1 2 2° x+y+z=0 のとき, y+z=-xとなり,①によりk=-1 注1°のとき,②③によりx-y=1/2 (y-x)となるから,r=y よって①とから,r=y=z となる. ←前文参照. 11 演習題 (解答は p.28) y+4(223-200 36 b+c c+a a+b b+c とする.このとき、 の値は (1) であり,a+b+c=0 a b C a a+b+c+6abc のときの の値を求めると (2) である. (福岡大) (b+c)a 後半は1文字消去すれば 解決する。

回答募集中 回答数: 0
数学 高校生

マーカーを引いた部分がよく分かりません 詳しく教えていただけると有難いです💦

基礎問 68 第3章 いろいろな関数 40 逆関数 f(x)=ax-2-1 (a>0.22)とするとき、次の問いに答えよ。 ((1) y=f(x)の逆関数 y=f(x) を求めよ。 エーエ (2) 曲線 C:y=f(x) と曲線 C2y=f-' (z) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C1, C2 の交点のx座標の差が2であるとき, αの値を求めよ。 精講 〈逆関数の求め方〉 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し,xとyを入れかえればよい 〈逆関数のもつ性質> Ⅰ. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは,直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。この基礎問では,IIが ポイントになります。 解答 (1) y=√ax-2-1 とおくと, √ax-2=y+1 リーェに で交わる ry-f よって すな 範囲 求め そこ この (3) よって, y+1≧0 より, 値域はy≧-1 ここで,両辺を2乗して 大切!! ax-2=(y+1)2 . x=11 (y+1)²+² (y≥−1) a よって、f(x)=1/2(x+12+2/2/(x-1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」 とはかいていないので, 「x≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、xの範囲, すなわち, 定義域が「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません. (2) y=f(x)とy=f(x)のグラフは,凹凸が異なり,かつ,直線 253

回答募集中 回答数: 0