学年

教科

質問の種類

数学 中学生

ここの問題問1以外全部わかりません。解き方と一緒に回答お願いします。

第四問下の図のように、1から18までの整数が表に書かれた 18枚のカードを並べます。 カー ドの裏には何も書かれていません。 1から6までの目が同じ確からしさで出る大小2個の立方体の サイコロを同時に投げ,大きいサイコロの目の数を a, 小さいサイコロの目の数をbとし,次の [ルール]でカードをひっくり返して表裏を逆にします。 [ルール] • まず αの倍数が書かれたカードをひっくり返して 表裏を逆にする。 1 2 3 4 5 6 次に6の倍数が書かれたカードをひっくり返して, 表裏を逆にする。 7 8 9 10 11 12 13 14 15 16 17 18 例えば a=4,b=6 のとき,まず 4, 8, 12, 16 のカードをひっくり返し、 次に 6, 12, 18 のカードを ひっくり返します。 その結果 4, 6, 8, 16, 18 のカードが裏向きになります。 次の各問に答えなさ い。 問1a=3,b=5のとき、表向きになっているカードは全部で何枚ありますか。 ) 問2 すべてのカードが表向きになっている確率を求めなさい。 問31のカードが表向きになっている確率を求めなさい。 問46のカードが表向きになっている確率を求めなさい。 問5 裏向きになっているカードの枚数が6枚である確率を求めなさい。 2

回答募集中 回答数: 0
数学 中学生

解説お願いします

2 下の図のように、箱Aと箱Bがある。 箱Aには1,2,3の数字が1つずつ書かれた3枚のカー ドが入っている。 箱Bには1,2,3,4,5,6の数字が1つずつ書かれた6枚のカードが入っ ている。それぞれの箱から1枚ずつカードを取り出す。 そして, 箱Aから取り出したカードに書か れた数字を十の位の数, 箱Bから取り出したカードに書かれた数字を一の位の数として,2けたの 自然数をつくる。 次の(1)~(3)に答えなさい。 ただし, 箱Aからどのカードが取り出されることも 箱Bからどのカードが取り出されることも,それぞれ同様に確からしいものとする。 1 2 3 1 2 3 4 5 6 箱A (1)つくった2けたの自然数が素数となる確率を求めなさい。 箱B (2) 2けたの自然数が4の倍数となる場合と5の倍数となる場合では, どちらが起こり やすいか。 それぞれの確率を求めて説明しなさい。 初学 (3) あみさんは、箱Aに4と5の数字が1つずつ書かれたカードを1枚ずつ、箱Bに0の数字が1 つ書かれたカードを2枚追加し,それぞれの箱から1枚ずつカードを取り出した。 箱Aから取り出したカードに書かれた数字を十の位の数, 箱Bから取り出したカードに書かれ た数字を一の位の数として, 2けたの自然数をつくったとき,この数が3の倍数となる確率を求 めなさい。 08- 08 08~ ROB

回答募集中 回答数: 0
数学 中学生

23ページは⑷、24ページは2のエ〜コまで、25ページは⑷を教えてください。一つでも大丈夫です!!

日 点 Step B 図1のような, 縦5cm 横8cmの長方形の紙Aがたくさんある。 Aをこの向きのまま、 図2 のように,m枚を下方向につないで長方形Bをつくる。 次に, そのBをこの向きのまま図3 のように右方向にn列つないで長方形Cをつくる。 長方形の【つなぎ方】 は,次の(ア)(イ) のいずれかとする。 はば (ア) 幅1cm重ねてのり付けする。 とうめい (イ) すき間なく重ならないように透明なテープを貼る。 数N の倍 【つなぎ方】 長方形の紙A 長方形 B 長方形 C 長方形 C 8cm 8cm -31cm 右 8cm 5cm m枚 9cm -1cm m枚 1cm テープで貼る 下 第1章 23 145 第6章 実力テスト n列-- (図1) (図2) (図3) のり付けして重なった部分 (図4) 例えば、図4の ①10×40=400cm² (イ)で2回つな 横の長さが31 '58 129×2+13×3 (2)(8×4-3)×2×1+(5×3-2)×3×1-6 り,そのBを4列, (ア) で1回, 39 -691cm² 4であり, たての長さが9cm, 39cm となる。 [栃木] (1) 【つなぎ方】は,(3) たこのとき,Cの面積を求め なさい ( 10点 べて (2) 【つなぎ方】 表せ なった部分の (4) あるか =102 皮」で 世院高] た。 このとき, のり付けして重 (3)A をすべて (ア)でつないでBをつくり, そのBをすべて(イ)でつないでCをつくった。 Cの 周の長さをlcm とする。 右方向の列の数が下方向につないだ枚数より4だけ多いときは6 の倍数になる。このことをmを用いて説明しなさい。 ( 15点) (4)Cが正方形になるときの1辺の長さを短いほうから3つ答えなさい。(10点) 23

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
数学 中学生

回答お願いします ‼️💧‬ べふあん します ‼️‼️‼️

ax2 a>0 増 [加 2 減 a 目もりが が、 放物線 ちら側に開 いるか, 開 の大きさは かから考え 答えられ 53 次の問に答えなさい。 (1) yはxの2乗に比例し、x=3のときy=3であるとき,yをxの式 で表しなさい。 (2) 関数 y=2x2 で, xの値が1から3まで増加するときの変化の割合を求 めなさい。 (3) 関数y= めなさい。 -x2で,xの変域が −2≦x≦5のときのyの変域を求 (4) 関数 y=ax² で, xの値が4から2まで増加するときの変化の割合 は3である。aの値を求めなさい。 (5) 関数 y=ax2 で, x の変域が-1≦x≦3のとき, yの変域が 0≦y≦6 である。 αの値を求めなさい。 1 54 右の図のように、関数 y= x のグラ 上に x座標がそれぞれ- 3,2となる点A, Bをとる。 また, 点Cはx軸上の点であり, x座標は3である。 次の問に答えなさい。 (1) 直線AB の式を求めなさい。 B y= !(2) AOBの面積を求めなさい。 (3) 線分 AC上の点で,∠AOB=△APB となるような点Pをとる。 点Pの 座標を求めなさい。 高校で学習すること 高校では,関数y=ax2のグラフをx軸方向にD, y 軸方向に gだけ平行 移動させたグラフ(頂点が原点0にない放物線)を学習する。(数学Ⅰ) Fii (0). v (3) 上,下 (4) 大きい (変化の割合) (yの増加量) (xの増加量) 変化の割合は, 1次関数 y=ax +6で は一定だが、 関 数y=ax² で は一定ではない。 < (3)yの変域を 求めるときは, グラフの形を考 え、xの変域に 0をふくむとき は注意する。 < (1) まず, 放物 と直線の交 A, B の座標 求める。 < (2) AAOB 軸で2つの 形に分けて るとよい。 < (3)直線AI 平行で点 0 る直線と, AC との交 考える。 y=ax² WX p

回答募集中 回答数: 0
1/41