学年

教科

質問の種類

数学 中学生

(3)を教えてください🙇🏻‍♀️

△ABCにおいて, 点Dは辺 AC上にあり, 線分BD は∠ABC の二等分線である。 D を通り、辺BCに平行な直線と辺ABの交点をEとする。 また,点Eを通り,辺 ACに平行な直線と辺BCとの交点を Fとする。 次の各問いに答えなさい。 (1) BE = CF となることを次のように証明した。 B アー E 英 F クにあてはまる最も適当な語句をあとの [語群] からそれぞれ選び, 記号で答えなさい。 お,同じ記号を繰り返し用いてもよいものとする。 ア( ク( (証明) ) ( )ウ()エ(1)オ()カキ( 線分 BD が∠ABC を2等分することから,∠ア=∠イ 00 ED / BCよりゥので,∠ア = ∠EDB 1 リン A も ま (1 エであるから, BE = ここで, △EBD は また EDカ FC EFカ DC より, キ □ので、四角形 EFCDはク B である。 ゆえにオ=CF......② 以上, ① ② より BE = CF (証明終わり) [語群] あ. AB い BC う. CA. DE お. EF か ABC き BCA く. CAB 1. AED こ. ADE さ. ABD L. DBC . EDB せ. EFB そ. DEF た.= ち と な. 正三角形 に直角三角形 ぬ. 二等辺三角形 ね. 平行四辺形 は 錯角が等しい ひ. 同位角が等しい ふ. 対頂角が等しい の台形 へ 3組の辺がそれぞれ等しい ほ. 2組の辺とその間の角がそれぞれ等しい 1組の辺とその両端の角がそれぞれ等しい 2組の対辺がそれぞれ平行である む. 2組の対辺がそれぞれ等しい 2組の対角がそれぞれ等しい も 対角線がそれぞれの中点で交わる や 1組の対辺が平行で, その長さが等しい (2) EBDとEFCの面積比を最も簡単な整数比で答えなさい。 ( ) (3) ABCをBABC の二等辺三角形とする。 △ABCに外接する円をかき BDの延長と円周 の交点を P とし,∠APC = 148° のとき,次の角の大きさを,それぞれ求めなさい。 ① ∠PCA ( ) 2 ∠BAC ( DC (2

解決済み 回答数: 1