"(1/2)+2cosAcosC=cos(A-C)
(1/2)+2cosAcosC=cosAcosC+sinAsinC
cosAcosC-sinAsinC=-(1/2)
cos(A+C)=-(1/2)
-cosB=-(1/2)
cosB=1/2
则:B=60°
若a+c=4,则由余弦定理,得:b²=a²+c²-2accosB=a²+c²-ac=(a+c)²-3ac=16-3ac
因a+c≥2√(ac),则:0<ac≤4,从而b²∈[4,16),即:b∈[2,4)
"
回答
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉