Mathematics
高校生

想請教這兩題:
我做第二題時(圖一)發現
無法直接將頂點作推移矩陣,得出的點並非新頂點,
只能用變數變換求新頂點
但第三題(圖二圖三)
詳解直接將焦點做鏡射矩陣了,
因此我想問的是,
有哪些特殊矩陣(即旋轉,鏡射,伸縮,推移)
是可以將特別意義的點(像頂點,反曲點,焦點)直接變換
哪些只能做變數變換來求點
然後非特殊矩陣就只能做變數變換?

謝謝🙏

No. #4x+3y=50 2.拋物線:(x-2)=4(y+3)上的點,經推移A=| [18] 變換後的圖形為拋物線 2 '的準線方程式為 ,試求的焦點坐標為 點是由上的4點推移而成,試求4點坐標為 。 ,的頂 Date 2-072 Hi 1717-7 xzX -- 1 y=2x+y.② y=y-2x (x-2)² = 4 (Y-2x+3) x²-4x+4 = 44 -8x+12 X+4X+4 = 41Y+12 (X+2)=4(y+3) →新貢奌(-2,3) 扌 肯変
238 第5章二次曲線 3.設雙曲線經過鏡射矩陣 3212 123 2 的作用變換為:x²+10v3xy+11y² = 64, (01 樂樂 試求的方程式為 , '的焦點坐標為 AAT eal 0 ——複習一下 00=x+x) 1.對y=tand-x的鏡射矩陣為 X+X+y= A = cos 20 sin 20 sin 20-cos 20 A = I,所以A^' = A 2.二倍角公式 sin20= 2sine cose = 滿足 2tan A 1 + tan²0 cos2d=1-2sin²0=2cos²0-1 = 1-tan²0 1+tan20
239個上的點(x,y) 2 17 y² 2 $=1=109-09 1...① + 5 16 2 代入”,得(x+3y)²+10 3.x+vy.3. 2 2 √3x- 2 尸 = 1.② 日 16 (2 x²+2v3xy+3y²+30x²+20√3xy-30² 4 ,0)+11 ( √3x- 介 33x² - 22√3xy+11y 4 + 八萬 ⇒ 16x² - 4y² = 64,得厂: 2 2 1 4 16 厂的中心為(0,0),左右開口 c² = a² + b² = 4 + 16 = 20 ⇒ c=2√√5 (x-3y,y),代入 x - 3y = y2 + 5y - = ⇒ x+1=y²+8 得 x + 17 = (y +4 所以的頂點為 開口朝右,焦距 故V向右移, V向左移 4 1 , 作 001 02.05 0° 4 D (1)y = v3 x = tan 1 12 -13 得厂的焦點為(±25,0) 高職曲餐共其 1 √3 1.0 =100X 2 2 ±2√√5 15 則 √3 1 0 √15 - 2 2 F2 所以”的焦點為(√5,15)與(一√5,vī5) 【類題 02 設點(x,y)在 = 1 2 A = 4-1 = 15 tye +x) 001 [ COS sin PA-PB =
二次曲線的線性變換

回答

只有旋轉、鏡射可以直接看點
因為它們不會造成變形

伸縮如果 x, y 伸縮的倍率一樣
那也不會造成變形

伸縮(應該)有一些特殊情況也可以直接看點
(比方說,x伸縮不影響它y座標的時候)
(但我看好像通常都不符合這種)

この回答にコメントする
疑問は解決しましたか?