回答

1/( a√b + b√a )
= 1/( √a²b + √ab² )
= ( √a²b - √ab² )/( a²b - ab² )
= ( a√b - b√a )/[ab(a-b)]

令 a = b+1
⇒ ( a√b - b√a )/ab
= √b/b - √a/a

故原式 = ( √1/1 - √2/2 ) + ( √2/2 - √3/3 ) + ( √3/3 - √4/4 ) + ⋯ + ( √15/15 - √16/16 )
= √1/1 - √16/16
= 1 - 1/4
= 3/4

この回答にコメントする
疑問は解決しましたか?