物理
高校生
解決済み

(2)の立式がよく分からないです。
電圧の代数和?の符号が特に分からなくて💦

コンデンサーを含 発展例題 31 図の回路において,Eは内部抵抗が無視できる起電力 9.0 R₁ V の電池, R,, R, はそれぞれ 2.0kΩ, 3.0kΩの抵抗, Ci, C2, A 2 C3 はそれぞれ 1.0μF, 2.0μF, 3.0μFのコンデンサーである。 はじめ、各コンデンサーに電荷はなかったものとする。 A010 (1) 十分に時間が経過したとき, R, を流れる電流は何mAか。 (2) 各コンデンサーのD側の極板の電荷は何μC か。 指針 (1) コンデンサーが充電を完了し ており、抵抗には定常電流が流れる。 (2) 電気量保存の法則から、各コンデンサーに おけるD側の極板の電荷の和は0である。 解説 (1) R1, R2 を流れる定常電流をI とすると, I= (I の計算では,V/kΩ=mAとなる) (2) 図のように,各コンデンサーの極板の電荷 を Q1, Q2, Q3〔μC〕とする。 はじめ各コンデンサ の電荷は0なので、 電気量保存の法則から, -9₁-92-93=0 1 R」の両端の電圧は, C, C3 の電圧の代数和に 等しく, R2 の両端の電圧は, C3, C2 の電圧の 代数和に等しい。したがって, 発展問題 9.0 2.0+3.0 =1.8mA A 2.0kΩ +9₁ 1.8mA HH 1.0μF -91 2.0×1.8= 3.0μF イト C₁ MEGROND E 91 1.0 C +Q3 T" D 93 3.0 93 92 + 3.0 2.0 C ..3 R2 C₂ 3.0kΩ th-₂ 92 +q22.0μF B UF となる。 B 式②、③は、 UC 3.0×1.8=- 式 ① ② ③ から, q=4.8μC, g2=8.4μC, Q3=3.6μC C₁ -4.8 μC, C₂: 8.4µC, C3: -3.6μC 抵 の に正 圧言 測定 (A) V (1 (2 (B) I₂ (3) (4) 294.F 力EG は, (3) こと (1) (2) E
コンデンサー 回路

回答

✨ ベストアンサー ✨

解き方は個人的にふたつあると思います。
最初のやつは電荷保存則を使いました。解説は必要ならば載せます。
で、質問者さんの根本の質問ですが、いわゆるキルヒホッフ則で解決できると思います。
コンデンサーは起電力として見れるので
赤↪️については、1.0/q1-3.0/q3=1.8×2.0 (-→+だからq3だけ符号がマイナス)
青↪️については、2.0/q2+ 3.0/q3=1.8×3.0
ってことではないでしょうか

たまご

画像忘れてました

この回答にコメントする
疑問は解決しましたか?