数学
中学生

このような問題の簡単な解き方ってどんなんでしたっけ。最小公約数がなんちゃらの、、

in 48%) 81(55%) TELS 2% 0% 22 A にそれらと平行な長さ acmの線分を1cm間隔にひく。 同様に,辺 AD と辺BCの間に長さ6cmの線分を 1cm間隔にひく。 さらに,対角線ACをひき, これらの線分と交わる 点の個数をnとする。 ただし, 2点A, Cは個数に含 めないものとし, 対角線 AC が縦と横の線分と同時に交わる点は, 1個として数える。 また, 長方形 ABCD の中にできた1辺の長さが1cmの正方形のうち, AC が通る正方形 の個数を考える。 ただし, 1辺の長さが1cmの正方形の頂点のみを ACが通る場合は, その正方形は個数に含めない。 例えば、図2のようにa=2, b=4のときはn=3となり, ACが通る正方形は4個である。 図3のようにa=2,6=5のときは, n=5となり, AC が通る正方形は6個である。 このとき,次の (1) (2) [3] の問いに答えなさい。 図2 図3 2 cm -4 cm D 002cm B B 〔1〕g=3, b=4 のとき,次の ①,②の問いに答えなさい。 の間 ① n の値を求めなさい。 ② AC が通る正方形の個数を求めなさい。 cm B 1 cm 1 cm -5 cm- C 1cm 51cm C [2] の値がαの値の3倍であるとき, 長方形 ABCD の中にできた1辺の長さが1cm の すべての正方形の個数から, AC が通る正方形の個数をひくと168個であった。 この とき,αの方程式をつくり, α の値を求めなさい。 ただし、 途中の計算も書くこと。 二次方程式 〔3〕 α9のとき, n=44 であった。 このとき, 考えられる6の値をすべて求めなさい。 〈 栃木県 〉 OSSARING K 人 人 +税

回答

これは、b=37および45の間を通るものを探しています

a=9なので37/9~45/9ということです

分かりずらかったらすみません
参考にしてみてください!

この回答にコメントする
疑問は解決しましたか?